
PDEs, Homework #1
Solutions

1. Show that the linear change of variables

v = x + y, w = x− y

transforms the equation uxy = 0 into the wave equation uvv − uww = 0.

• Differentiating with respect to x, we use the chain rule to get

ux = uvvx + uwwx = uv + uw.

Differentiating with respect to y, we then similarly find that

uxy = (uvvvy + uvwwy) + (uwvvy + uwwwy)

= uvv − uvw + uwv − uww

= uvv − uww.

2. Which of the following PDEs are linear? Which of those are homogeneous?

x2ux + y2uy = sin(xy), exux + euuy = 0, xuxx + yuyy = ux.

• Only the first and the third are linear. Only the third is homogeneous.

3. Find all solutions u = u(x, y) of the equation uxy = xy.

• In this case, one may simply integrate the given PDE, namely

uxy = xy =⇒ ux =

∫
xy dy =

xy2

2
+ C1(x)

=⇒ u =

∫
xy2

2
+ C1(x) dx =

x2y2

4
+ C2(x) + C3(y).

4. Find all separable solutions u = F (x)G(y) of the equation xuy = yux.

• To say that u = F (x)G(y) is a solution of xuy = yux is to say that

xF (x)G′(y) = yF ′(x)G(y) ⇐⇒ G′(y)

yG(y)
=

F ′(x)

xF (x)
.

Here, we need a function of y to be equal to a function of x, so this implies

G′(y)

yG(y)
=

F ′(x)

xF (x)
= λ =⇒ G′(y) = λyG(y), F ′(x) = λxF (x)

for some λ ∈ R. Once we now solve these two separable ODEs, we find that

G(y) = C1e
λy2/2, F (x) = C2e

λx2/2 =⇒ u(x, y) = C3e
µx2+µy2

.



5. Find all separable solutions u = F (x)G(y)H(z) of the equation ux − uy + uz = 0.

• To say that u = F (x)G(y)H(z) is a solution of ux − uy + uz = 0 is to say that

F ′(x)G(y)H(z)− F (x)G′(y)H(z) + F (x)G(y)H ′(z) = 0.

Dividing through by F (x)G(y)H(z), we now arrive at the equation

F ′(x)

F (x)
− G′(y)

G(y)
= −H ′(z)

H(z)
.

Here, the left hand side depends only on x, y and the right hand side only on z, so

F ′(x)

F (x)
− G′(y)

G(y)
= −H ′(z)

H(z)
= λ.

Using the exact same argument as above, we can similarly argue that

F ′(x)

F (x)
=

G′(y)

G(y)
+ λ =⇒ F ′(x)

F (x)
=

G′(y)

G(y)
+ λ = µ.

This allows us to deduce three equations for the three unknowns, namely

F ′(x) = µF (x), G′(y) = (µ− λ)G(y), H ′(z) = −λH(z).

Solving these three simple ODEs, we conclude that

F (x) = C1e
µx, G(y) = C2e

(µ−λ)y, H(z) = C3e
−λz.

Thus, every separable solution of the given PDE has the form

u(x, y, z) = F (x)G(y)H(z) = C4e
µx+(µ−λ)y−λz.

6. Find all solutions u = u(x, t) of the equation ut + 2xtux = et.

• In this case, the characteristic equations are

dt

ds
= 1,

dx

ds
= 2xt,

du

ds
= et

and we shall assume that u(x0, 0) = f(x0). Then we have t = s and also

dx

x
= 2t ds = 2s ds =⇒ log x = s2 + C =⇒ x = x0e

s2

,

so the rightmost characteristic equation gives

du = et ds = es ds =⇒ u = es + C =⇒ u = es − 1 + u0.

Once we now recall that s = t, we may finally conclude that

u = et − 1 + f(x0) = et − 1 + f(xe−t2).



7. Find a function f(x) for which the initial value problem

ux + uy = 2xu, u(x, x) = f(x)

has no solutions and a function f(x) for which it has infinitely many solutions.

• In this case, the characteristic equations are

dx

ds
= 1,

dy

ds
= 1,

du

ds
= 2xu

and we shall assume that u(0, y0) = g(y0). Then we have x = s and y = s + y0, so

du

u
= 2x ds = 2s ds =⇒ log u = s2 + C =⇒ u = u0e

s2

.

Eliminating y0 and s, we may thus conclude that

x = s = y − y0 =⇒ u(x, y) = g(y0)e
x2

= g(y − x)ex2

=⇒ u(x, x) = g(0)ex2

.

Now, if f(x) is a constant multiple of ex2
, then the initial value problem will have an

infinite number of solutions, as g can be any function for which g(0) is equal to that
constant. And if f(x) is not a constant multiple of ex2

, then no solutions exist.

8. Show that the characteristic curves for the equation yux − xuy = 0 are circles around
the origin. Conclude that u(x, 0) = f(x) must be even for any solution u.

• In this case, the characteristic equations are

dx

ds
= y,

dy

ds
= −x,

du

ds
= 0.

The easiest way to solve this system of ODEs is to note that

x′ = y, y′ = −x =⇒ x′′ = y′ = −x =⇒ x′′ + x = 0.

This gives x = C1 sin s + C2 cos s and also y = x′ = C1 cos s− C2 sin s, so

x2 + y2 = (C1 sin s + C2 cos s)2 + (C1 cos s− C2 sin s)2 = C2
1 + C2

2 .

To show that u(x, 0) = f(x) must be even, we need to show that

u(x, 0) = u(−x, 0)

for all x ∈ R. This follows trivially by above since the points (± x, 0) lie on the same
characteristic curve and since u is constant along this curve.



9. Find all solutions u = u(x, y) of the equation ux + uy + u = ey−x.

• In this case, the characteristic equations are

x′ = 1, y′ = 1, u′ + u = ey−x

so we have x = s + x0 and y = s + y0, while

u′ + u = ey−x = ey0−x0 .

Note that this ODE is first-order linear with integrating factor es, namely

(esu)′ = esey0−x0 =⇒ esu = esey0−x0 + C

=⇒ esu = (es − 1)ey0−x0 + u0.

Imposing a generic initial condition such as u(x0, 0) = f(x0), we conclude that

y = s = x− x0 =⇒ u = (1− e−s)e−x0 + f(x0)e
−s

=⇒ u = (1− e−y)ey−x + f(x− y)e−y.

10. Find all solutions u = u(x, y, z) of the initial value problem

xux + 2yuy + uz = 3u, u(x, y, 0) = f(x, y).

• In this case, the characteristic equations are

x′ = x, y′ = 2y, z′ = 1, u′ = 3u

and the initial condition u(x0, y0, 0) = f(x0, y0) implies that

x = x0e
s, y = y0e

2s, z = s, u = f(x0, y0)e
3s.

Once we now eliminate x0, y0 and s, we may conclude that

x0 = xe−z, y0 = ye−2z =⇒ u = f(xe−z, ye−2z)e3z.

11. Which of the following second-order equations are hyperbolic? elliptic? parabolic?

uxx − 2uxy + uyy = 0, 3uxx + uxy + uyy = 0, uxx − 5uxy − uyy = 0.

• The first equation is parabolic since ∆ = 22 − 4 = 0. The second equation is elliptic
since ∆ = 12 − 4 · 3 < 0. The third equation is hyperbolic since ∆ = 52 + 4 > 0.

12. For which values of a is the equation auxx + auxy + uyy = 0 elliptic?

• The discriminant ∆ = B2 − 4AC = a2 − 4a is negative if and only if

a(a− 4) < 0 ⇐⇒ 0 < a < 4.


