PDEs, Homework #4 Problems: 1, 2, 4, 7, 10 due Wednesday, March 3

1. Show that the average value of a harmonic function over a ball is equal to its value at the centre. In other words, show that a harmonic function u satisfies

$$u(x) = \frac{1}{\alpha_n r^n} \int_{|y-x| \le r} u(y) \, dy$$

for all $x \in \mathbb{R}^n$ and all r > 0, where α_n is the volume of the unit ball in \mathbb{R}^n . Hint: write the integral in polar coordinates and use the mean value property for spheres.

2. Suppose that $A \subset \mathbb{R}^n$ is a bounded region and that $u \colon \mathbb{R}^n \to \mathbb{R}$ satisfies

 $\Delta u(x) = \lambda u(x)$ when $x \in A$, u(x) = 0 when $x \in \partial A$.

Show that u must be identically zero, if $\lambda \ge 0$. Hint: write down Green's identity for the integral of $u\Delta u$ and then simplify.

3. Show that $H' = \delta$ in the sense of distributions, where H is the Heaviside function

$$H(x) = \left\{ \begin{array}{ll} 0 & \text{if } x < 0\\ 1 & \text{if } x \ge 0 \end{array} \right\}.$$

- 4. We say that $u \colon \mathbb{R}^n \to \mathbb{R}$ is subharmonic, if $\Delta u(x) \ge 0$ for all $x \in \mathbb{R}^n$. Show that u^2 is subharmonic whenever u is harmonic.
- 5. Find all harmonic functions u(x, y) which have the form u(x, y) = F(x/y).
- **6.** Find the unique solution u(x, y) of the Dirichlet problem

 $u_{xx} + u_{yy} = 0$ when $x^2 + y^2 < a^2$, u(x, y) = g(x, y) when $x^2 + y^2 = a^2$.

- 7. Solve $u_{xx} + u_{yy} = 1$ in the annulus $a^2 \le x^2 + y^2 \le b^2$ subject to zero Dirichlet boundary conditions. Hint: looking for radial solutions, one ends up with an ODE.
- 8. Given a bounded region $A \subset \mathbb{R}^n$, show that the Dirichlet problem

$$\Delta u(x) = f(x)$$
 when $x \in A$, $u(x) = g(x)$ when $x \in \partial A$

has at most one solution. Give one proof using the maximum principle and one using Green's first identity. Hint: if u, v are solutions, then w = u - v is harmonic, so its min/max values are attained on ∂A ; use Green's identity for the integral of $w\Delta w$.

- **9.** Suppose u is harmonic in the unit disc $x^2 + y^2 \le 1$ and such that $u(x, y) = x^2$ on the boundary $x^2 + y^2 = 1$. Determine the value of u at the origin.
- 10. Find the unique bounded solution of the Laplace equation $u_{xx} + u_{yy} = 0$ in the upper half plane $y \ge 0$ subject to the boundary condition $u(x, 0) = \operatorname{sign} x$.