PDEs, Homework #2 Problems: 2, 7, 8, 9, 10 due Wednesday, Dec. 2

1. Show that the solution u(x,t) of the initial value problem

$$u_{tt} = c^2 u_{xx}, \qquad u(x,0) = \varphi(x), \qquad u_t(x,0) = \psi(x)$$
 (WE)

is even in x, if the initial data φ, ψ are even. Hint: show u(-x, t) is also a solution.

- 2. Solve the Neumann problem for the wave equation on the half line. That is, find the solution to (WE) when x > 0 and the boundary condition $u_x(0,t) = 0$ is imposed for all $t \ge 0$. Hint: argue as for the Dirichlet problem but use an even extension.
- **3.** Find all solutions u = u(x, y) of the second-order equation $u_{xx} + 4u_{xy} + 3u_{yy} = 0$.
- 4. Show that the solution to the wave equation (WE) need not remain bounded at all times, even though it is initially bounded. Hint: take the initial data to be constant.
- 5. Solve the wave equation (WE) in the case that $\varphi(x) = x^2$ and $\psi(x) = x + 1$.
- 6. Suppose that a < b and consider the Cauchy problem (WE) in the case that

$$\varphi(x) = \psi(x) = \left\{ \begin{array}{ll} 1 & \text{if } a \leq x \leq b \\ 0 & \text{otherwise} \end{array} \right\}.$$

Compute the limit $\lim_{t\to\infty} u(x,t)$ for each fixed $x\in\mathbb{R}$.

7. Solve the following non-homogeneous wave equation on the real line:

$$u_{tt} - c^2 u_{xx} = t,$$
 $u(x, 0) = x^2,$ $u_t(x, 0) = 1.$

8. Use the substitution $v(x,t) = e^{\lambda t}u(x,t)$ to solve the initial value problem

$$u_{tt} - u_{xx} + 2\lambda u_t + \lambda^2 u = 0,$$
 $u(x, 0) = \varphi(x),$ $u_t(x, 0) = \psi(x)$

on the real line. Hint: you should find that v satisfies the wave equation $v_{tt} = v_{xx}$.

- 9. Consider the wave equation with damping $u_{tt} c^2 u_{xx} + du_t = 0$ on the real line. Show that the energy is decreasing for all classical solutions of compact support, if d > 0.
- **10.** Solve the Cauchy problem (WE) on the half line x > 0 when $\varphi(x) = \psi(x) = 1$ and the Dirichlet condition u(0, t) = 0 is imposed for all $t \ge 0$. Is your solution a classical one? Hint: there are different formulas for the cases x > ct and $x \le ct$.
- 11. Find the eigenfunctions and eigenvalues of $-\partial_x^2$ subject to Neumann boundary conditions on [0, L]. That is, find all nonzero functions F(x) and all $\lambda \in \mathbb{R}$ such that

$$-F''(x) = \lambda F(x), \qquad F'(0) = F'(L) = 0.$$

12. Solve the wave equation $u_{tt} = 4u_{xx}$ on the interval $[0, \pi]$ subject to the conditions

$$u(x,0) = \cos x, \qquad u_t(x,0) = 1, \qquad u(0,t) = 0 = u(\pi,t)$$