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1. (a) (4 points) For the differential equation

(t− 1)
∂u

∂t
− x

∂u

∂x
= 0

state its order, whether it is linear or nonlinear, and if linear whether it is homoge-

neous or inhomogeneous.

(b) (10 points) Solve the initial value problem

(t− 1)
∂u

∂t
− x

∂u

∂x
= 0 u(0, x) = f(x)

(c) (6 points) What can you say about existence and uniqueness of classical solutions

of this differential equation?

2. (a) (10 points) Solve the initial value problem for the Diffusion Equation

∂u

∂t
− k

∂2u

∂x2
= 0 u(0, x) = cos(ωx)

(b) (10 points) More generally, the Diffusion Equation with initial data f ,

∂u

∂t
− k

∂2u

∂x2
= 0 u(0, x) = f(x)

with f is periodic with period L the solution is of the form

u(t, x) =

∫ L

0

k(t, x, y)f(y) dy.

Find k.

3. (a) (10 points) Suppose that u satisfies the initial value problem for the Diffusion

Equation with initial data f ,

∂u

∂t
− k

∂2u

∂x2
= 0 u(0, x) = f(x).

For which p is it true that if f ∈ Lp(R) then

lim
t→0+

u(t, ·) = f

with convergence in Lp(R)?
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(b) (10 points) Justify your answer from the previous part. In other words, if you have

said that the statement is false for some p then give an f for which it fails. If you

have said that it holds for some p then say from what theorem this follows.

4. (a) (8 points) Solve the initial value problem for the Wave Equation on the half-

line x ≥ 0 with Neumann boundary conditions and the given initial data,

∂2u

∂t2
− c2

∂2u

∂x2
= 0 u(0, x) = 0

∂u

∂t
(0, x) = x

∂u

∂x
(t, 0) = 0.

(b) (6 points) What kind of solution have you found: classical? weak? distribution?

(c) (6 points) Prove that if u solves the initial value problem

∂2u

∂t2
− c2

∂2u

∂x2
= h(t, x) u(0, x) = f(x)

∂u

∂t
(0, x) = g(x)

for the inhomogeneous Wave Equation in R with f , g and h all odd functions of x

then u is also an odd function of x.

5. (a) (5 points) State the Poisson formula for the disc of radius a centred at 0. You

may give any of the various equivalent forms.

(b) (5 points) The Poisson formula for the upper half plane takes the form

u(x, y) =
1

π

∫ ∞

−∞

yf(z)

(x− z)2 + y2
dz.

This is supposed to solve the Dirichlet problem for the Laplace equation

∂2u

∂x2
+

∂2u

∂y2
= 0 u(x, 0) = f(x),

and yet, when we substitute 0 for y in the Poisson formula we get

u(x, 0) = 0.

Explain.

(c) (10 points) Prove that
∂2u

∂x2
+

∂2u

∂y2
= δ

as distributions on R2, where

u(x, y) = − 1

4π
log(x2 + y2)
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6. (a) (6 points) State Green’s first and second identities.

(b) (8 points) Prove that any two solutions of the Neumann problem with the same

boundary data on a bounded connected domain with smooth boundary differ by a

constant.

(c) (6 points) Show, by means of an example, that this statement may fail for un-

bounded domains.

7. (a) (10 points) Solve the initial value problem for Burgers’ Equation with the given

initial data,
∂u

∂t
+ u

∂u

∂x
= 0 u(0, x) = x2.

Be sure to state where your solution is defined.

(b) (10 points) For which a, b, c is

u(t, x) =

{
a if x < ct

b if x ≥ ct

a classical solution of Burgers’ Equation? For which is it a weak solution? For

which does it satisfy the entropy condition?
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