
Sample final exam

1a. Indeed, every solution has the form x(t) = c1 sin t + c2 cos t.

1b. By the method of undetermined coefficients, every solution has the form

x(t) = c1 sin t + c2 cos t + At sin t + Bt cos t

for some arbitrary constants c1, c2. The constants A,B can be determined, if needed,
but that is not necessary here. Since x(t) does not satisfy the homogeneous equation,
either A or B is nonzero, and this already implies that x(t) is unbounded.

1c. Indeed, every solution has the form x(t) = c1 sin t + c2 cos t + A sin(2t) + B cos(2t).

1d. Setting t = 0 in the ODE, we get x(0) = 0, and this violates the initial condition.

1e. Using separation of variables, one easily finds that

dx

dt
=

x

t
=⇒

∫
dx

x
=

∫
dt

t
=⇒ log |x| = log |t|+ C =⇒ x = Ct.

Strictly speaking, this computation can only be justified at points where x, t are both
nonzero. The easiest way to get around this difficulty is to simply check that x = Ct
is, in fact, a solution to the initial value problem.

2a. Since y 6= 0 by uniqueness, we may separate variables to get

dy

dt
= −2ty =⇒

∫
dy

y
= −

∫
2t dt

=⇒ log |y| = −t2 + C =⇒ y = Ce−t2 .

To ensure that y(0) = e, we need to have C = e and this implies y = e1−t2 .

2b. Noting that the left hand side of the ODE is a perfect derivative, we get

(
y′ − 1

t
· y

)′
= t log t =⇒ y′ − 1

t
· y =

∫
t log t dt.

In order to compute the integral, we now integrate by parts to find that

∫
t log t dt =

t2

2
· log t−

∫
t2

2
· 1

t
dt =

t2 log t

2
− t2

4
+ C1. (1)

In particular, it remains to solve the first-order linear ODE

y′ − 1

t
· y =

t2 log t

2
− t2

4
+ C1.
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Note that an integrating factor for this ODE is given by

µ = exp

(
−

∫
1

t
dt

)
= exp(− log t) = t−1.

Multiplying by this factor and using equation (1), we conclude that

(y

t

)′
=

t log t

2
− t

4
+

C1

t
=⇒ y

t
=

∫
t log t

2
− t

4
+

C1

t
dt

=⇒ y

t
=

t2 log t

4
− t2

8
− t2

8
+ C1 log t + C2

=⇒ y =
t3 log t

4
− t3

4
+ C1t log t + C2t.

To ensure that y(1) = 0, we need to have C2 = 1/4. Once we now note that

y′ =
3t2 log t

4
+

t2

4
− 3t2

4
+ C1 log t + C1 + C2,

the initial condition y′(1) = 0 imposes the additional restriction

0 =
1

4
− 3

4
+ C1 +

1

4
=⇒ C1 =

1

4
.

In other words, we need to have C1 = C2 = 1/4, and this finally gives

y =
t3 log t− t3 + t log t + t

4
.

3a. When y1 = t−1, we have y′1 = −t−2 and also y′′1 = 2t−3, so

t2y′′1 + 3ty′1 + y1 = 2t−1 − 3t−1 + t−1 = 0

and y1 = t−1 is a solution, indeed. We now use reduction of order to find a second
solution of the form y2 = y1v = t−1v. Differentiating, we get

y2 = t−1v, y′2 = −t−2v + t−1v′, y′′2 = 2t−3v − 2t−2v′ + t−1v′′

and thus y2 = t−1v is also a solution, provided that

0 = t2y′′2 + 3ty′2 + y2 = tv′′ + v′ =⇒ (tv′)′ = 0.

Integrating the last equation and then integrating again, we conclude that

v′ = C1/t =⇒ v = C1 log t + C2 =⇒ y2 = C1t
−1 log t + C2t

−1.
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3b. To find the homogeneous solution yh, we note that

λ3 + λ2 − 4λ− 4 = 0 =⇒ λ2(λ + 1)− 4(λ + 1) = 0

=⇒ (λ + 1)(λ− 2)(λ + 2) = 0

=⇒ yh = c1e
−t + c2e

2t + c3e
−2t.

Based on this fact, we now look for a particular solution of the form

yp = Ate−2t.

Differentiating this expression three times, one finds that

y′p = Ae−2t(1− 2t), y′′p = 4Ae−2t(t− 1), y′′′p = 4Ae−2t(3− 2t).

Once we now combine all these facts, we may finally conclude that

y′′′p + y′′p − 4y′p − 4yp = 4Ae−2t =⇒ A = 1 =⇒ yp = te−2t

=⇒ y = c1e
−t + c2e

2t + c3e
−2t + te−2t.

4a. You already did this in problem 2 of homework 4; every solution is of the form

x(t) = et(x0 cos t− y0 sin t), y(t) = et(x0 sin t + y0 cos t).

4b. According to the formula in part (a), neither x nor y remains bounded at all times, so
the zero solution is unstable. Alternatively, one can compute the eigenvalues of

A =

[
1 −1
1 1

]
=⇒ λ2 − 2λ + 2 = 0 =⇒ λ = 1± i.

Since these eigenvalues have positive real part, the zero solution is unstable.

5a. In this case, the Jacobian matrix at the origin is

J =

[
fx fy

gx gy

]
=

[
1− 2x 1− 2y
2− 2xy 1− x2

]
=

[
1 1
2 1

]

so its eigenvalues are given by

λ2 − (tr J)λ + det J = 0 =⇒ λ2 − 2λ− 1 = 0 =⇒ λ = 1±
√

2.

Since one of these eigenvalues is positive, the zero solution is unstable.

5b. Indeed, V (x, y) = x2 + y2 is positive definite with

V ∗(x, y) = 2xx′ + 2yy′ = −2x2y2 − 2x4 − 2y2

so that V ∗(x, y) ≤ 0 at all points with equality only at the origin.
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5c. In this case, V (x, y) = x2 + y2 is positive definite with

V ∗(x, y) = 2xx′ + 2yy′ = −4x2 − 2xy2 − 2x2y − 2y2

and we need to show that V ∗(x, y) ≤ 0 in some open region around the origin. Note
that the quadratic terms have the correct sign; those are also the dominant terms for
points near the origin, as the remaining terms are cubic. Let us now write

V ∗(x, y) = −2x2(y + 2)− 2y2(x + 1)

and focus on the region defined by y > −2 and x > −1. Then this region is open and
we do have V ∗(x, y) ≤ 0 with equality only at the origin.
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