XMA2161

TRINITY COLLEGE

FACULTY OF ENGINEERING, MATHEMATICS AND SCIENCE

SCHOOL OF MATHEMATICS

SF Maths, SF TP JS TSM Trinity Term 2009

Course 216

Tuesday, May 19

Luce Hall

9:30 - 11:30

Dr. P. Karageorgis

ATTEMPT FOUR QUESTIONS.

Log tables are available from the invigilators, if required.

- 1. (5 points each) Prove each of the following statements.
 - (a) Every solution of x''(t) + x(t) = 0 is bounded.
 - (b) Every solution of $x''(t) + x(t) = \sin t$ is unbounded.
 - (c) Every solution of $x''(t) + x(t) = \sin(2t)$ is bounded.
 - (d) The initial value problem tx'(t)=x(t), x(0)=1 has no solutions.
 - (e) The initial value problem $tx'(t)=x(t),\ x(0)=0$ has infinitely many solutions.
- 2. (25 points)
 - (a) (5 points) Find the unique solution y = y(t) of the initial value problem

$$y' + 2ty = 0,$$
 $y(0) = e.$

(b) (20 points) Find the unique solution y = y(t) of the initial value problem

$$y'' - \frac{y'}{t} + \frac{y}{t^2} = t \log t,$$
 $y(1) = y'(1) = 0.$

As a hint, note that the left hand side of the ODE is a perfect derivative.

- 3. (25 points)
 - (a) (10 points) Check that $y_1(t) = 1/t$ is a solution of the second-order ODE

$$t^2y'' + 3ty' + y = 0, t > 0$$

and then use this fact to find all solutions of the ODE.

(b) (15 points) Find all solutions y = y(t) of the third-order ODE

$$y''' + y'' - 4y' - 4y = 4e^{-2t}.$$

- 4. (25 points)
 - (a) (20 points) Find all solutions of the autonomous linear system

$$x'(t) = x(t) - y(t),$$
 $y'(t) = x(t) + y(t).$

- (b) (5 points) Is the zero solution stable? Is it asymptotically stable?
- 5. (25 points)
 - (a) (5 points) Show that the zero solution is an unstable solution of the system

$$x'(t) = x + y - x^2 - y^2,$$
 $y'(t) = 2x + y - x^2y.$

(b) (5 points) Show that the zero solution is an asymptotically stable solution of

$$x'(t) = -2xy^2 - x^3, y'(t) = x^2y - y.$$

As a hint, try to show that $V(x,y)=x^2+y^2$ is a strict Lyapunov function.

(c) (15 points) Show that the zero solution is an asymptotically stable solution of

$$x'(t) = -2x - y^2,$$
 $y'(t) = -x^2 - y.$

As a hint, try to show that $V(x,y)=x^2+y^2$ is a strict Lyapunov function.