ODEs, Homework #5 Solutions

1. In each of the following cases, is the zero solution stable? Asymptotically stable?

(a)
$$x' = 3x - 2y$$
, $y' = 2x - 2y$ (b) $x' = x - 5y$, $y' = x - 3y$ (c) $x' = -y$, $y' = 4x$

• In each case, we write the given system in the form y' = Ay and then we compute the eigenvalues of A to determine stability. For the first system, we have

$$A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \implies \lambda^2 - \lambda - 2 = 0 \implies \lambda = -1, 2$$

and the zero solution is unstable. For the second system, we have

$$A = \begin{bmatrix} 1 & -5 \\ 1 & -3 \end{bmatrix} \implies \lambda^2 + 2\lambda + 2 = 0 \implies \lambda = -1 \pm i$$

and the zero solution is (asymptotically) stable. For the third system, we have

$$A = \begin{bmatrix} 0 & -1 \\ 4 & 0 \end{bmatrix} \implies \lambda^2 + 4 = 0 \implies \lambda = \pm 2i$$

and the zero solution is stable but not asymptotically stable.

2. Show that the zero solution is a stable solution of the system

$$x' = y, \qquad y' = -y - x^3$$

by finding a Lyapunov function of the form $V(x,y) = \alpha x^4 + \beta y^2$.

• We take $\alpha, \beta > 0$ so that V is positive definite and then we compute

$$V^*(x,y) = 4\alpha x^3 y + 2\beta y(-y - x^3) = (4\alpha - 2\beta)x^3 y - 2\beta y^2.$$

To ensure that this expression is non-positive, one may take $\beta = 2\alpha$ for any $\alpha > 0$.

3. Show that the zero solution is an asymptotically stable solution of the system

$$x' = -x - xy^2, \qquad y' = -y - x^2y$$

by finding a strict Lyapunov function of the form $V(x,y) = \alpha x^2 + \beta y^2$.

• We take $\alpha, \beta > 0$ so that V is positive definite and then we compute

$$V^*(x,y) = 2\alpha x(-x - xy^2) + 2\beta y(-y - x^2y)$$

= $-2\alpha x^2 - 2\alpha x^2y^2 - 2\beta y^2 - 2\beta x^2y^2$

This is certainly non-positive and vanishing only at the origin for any $\alpha, \beta > 0$.

4. Find all critical points of the system

$$x' = x(10 - x - y),$$
 $y' = y(30 - 2x - y)$

and then classify them as stable, asymptotically stable or unstable.

• To find the critical points, we need to solve the equations

$$x(10 - x - y) = 0,$$
 $y(30 - 2x - y) = 0.$

These imply x = 0 and y(30 - y) = 0 or else y = 0 and x(10 - x) = 0 or else

$$10 - x - y = 0, \qquad 30 - 2x - y = 0.$$

It now easily follows that there are four critical points, namely

$$A(0,0), B(0,30), C(10,0), D(20,-10).$$

To determine their stability, we compute the eigenvalues of the Jacobian matrix

$$J = \begin{bmatrix} f_x & f_y \\ g_x & g_y \end{bmatrix} = \begin{bmatrix} 10 - 2x - y & -x \\ -2y & 30 - 2x - 2y \end{bmatrix}.$$

At the point A(0,0), this becomes a diagonal matrix with entries 10, 30 so the eigenvalues are positive and (0,0) is unstable. At the point B(0,30), we have

$$J = \begin{vmatrix} -20 & 0 \\ -60 & -30 \end{vmatrix} \implies \lambda = -20, -30$$

so this point is (asymptotically) stable. At the point C(10,0), we have

$$J = \begin{bmatrix} -10 & -10 \\ 0 & 10 \end{bmatrix} \implies \lambda = -10, 10$$

so this point is unstable. At the point D(20, -10), we finally have

$$J = \begin{bmatrix} -20 & -20 \\ 20 & 10 \end{bmatrix} \implies \lambda^2 + 10\lambda + 200 = 0 \implies \lambda = -5 \pm 5i\sqrt{7}$$

so this point is (asymptotically) stable as well.

5. Find all critical points of the system

$$x' = y^2 - x, \qquad y' = x^2 - y$$

and then classify them as stable, asymptotically stable or unstable.

• A critical point (x, y) must satisfy the equations

$$y^{2} = x$$
, $x^{2} = y$ \implies $y^{4} = x^{2} = y$ \implies $y(y^{3} - 1) = 0$.

Thus, it easily follows that the only critical points are

To determine their stability, we compute the eigenvalues of the Jacobian matrix

$$J = \begin{bmatrix} f_x & f_y \\ g_x & g_y \end{bmatrix} = \begin{bmatrix} -1 & 2y \\ 2x & -1 \end{bmatrix}.$$

At the point A(0,0), this becomes a diagonal matrix with entries -1, -1 so the zero solution is asymptotically stable. At the point B(1,1), we have

$$J = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \implies \lambda^2 + 2\lambda - 3 = 0 \implies \lambda = -3, 1$$

so one of the eigenvalues is positive and this point is unstable.