
ODEs, Homework #3
Solutions

1. Suppose A,B are constant square matrices such that etAetB = et(A+B) for all t ∈ R.
Show that AB = BA. Hint: differentiate twice and let t = 0.

• Differentiating the given identity with respect to t, we find that

etAetB = et(A+B) =⇒ AetAetB + etABetB = (A+B)et(A+B).

Differentiating once again, we now get

A2etAetB + AetABetB + AetABetB + etAB2etB = (A+B)2et(A+B)

so we can let t = 0 to conclude that

A2 + AB + AB +B2 = A2 + AB +BA+B2 =⇒ AB = BA.

2. Compute the matrix exponential etA in the case that

A =

1 0 0
1 2 0
1 1 1

 .

• In this case, λ = 1 is a double eigenvalue with corresponding eigenvectors

v1 =

00
1

 , v2 =

 1
−1
0

 .

There is also a simple eigenvalue, namely λ = 2, with corresponding eigenvector

v3 =

01
1

 .

Since three linearly independent eigenvectors exist, A is diagonalizable and so

P =

0 1 0
0 −1 1
1 0 1

 =⇒ P−1AP =

1 1
2


=⇒ etP

−1AP =

et et

e2t


=⇒ etA =

 et 0 0
e2t − et e2t 0
e2t − et e2t − et et

 .



3. Compute the matrix exponential etA in the case that A =

[
1 2

−4 −3

]
.

• In this case, the eigenvalues of A are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 + 2λ+ 5 = 0 =⇒ λ = −1± 2i.

Since the eigenvalues are distinct, A is diagonalizable, and it is easy to check that

v1 =

[
1

i− 1

]
, v2 =

[
1

−i− 1

]
are eigenvectors corresponding to λ = −1 + 2i and λ = −1− 2i, respectively. Thus,

P =

[
1 1

i− 1 −i− 1

]
=⇒ P−1AP =

[
−1 + 2i 0

0 −1− 2i

]
=⇒ etA = e−t

[
cos(2t) + sin(2t) sin(2t)

−2 sin(2t) cos(2t)− sin(2t)

]
.

4. Let x0, v0 ∈ R be fixed. Find the unique solution of the initial value problem

x′′(t)− 2x′(t) + 2x(t) = et, x(0) = x0, x′(0) = v0.

• To find the homogeneous solution xh, we note that

λ2 − 2λ+ 2 = 0 =⇒ λ = 1± i =⇒ xh = c1e
t sin t+ c2e

t cos t.

Based on this fact, we now look for a particular solution of the form

xp = Aet.

It is easy to check that this is a solution if and only if

et = x′′
p − 2x′

p + 2xp = Aet ⇐⇒ A = 1.

Writing x = xh + xp as usual, the initial condition x(0) = x0 now gives

x = c1e
t sin t+ c2e

t cos t+ et =⇒ x0 = c2 + 1 =⇒ c2 = x0 − 1

and the initial condition x′(0) = v0 gives

x′ = c1e
t(sin t+ cos t) + c2e

t(cos t− sin t) + et =⇒ v0 = c1 + c2 + 1.

In particular, v0 = c1 + x0 and the unique solution is

x = (v0 − x0)e
t sin t+ (x0 − 1)et cos t+ et.



5. Find all solutions of the non-homogeneous scalar ODE

x′′(t)− 2x′(t) + 2x(t) = te2t.

• To find the homogeneous solution xh, we note that

λ2 − 2λ+ 2 = 0 =⇒ λ = 1± i =⇒ xh = c1e
t sin t+ c2e

t cos t.

Based on this fact, we now look for a particular solution of the form

xp = Ate2t +Be2t.

Differentiating twice, one finds that

x′
p = 2Ate2t + (A+ 2B)e2t

x′′
p = 4Ate2t + 4(A+B)e2t

x′′
p − 2x′

p + 2xp = 2Ate2t + 2(A+B)e2t.

Thus, xp is a particular solution when A = 1/2 and B = −1/2, so

x = xh + xp = c1e
t sin t+ c2e

t cos t+
te2t

2
− e2t

2
.

6. Find all solutions of the non-homogeneous third-order scalar ODE

y′′′(t)− 2y′′(t)− y′(t) + 2y(t) = sin t.

• To find the homogeneous solution yh, we note that

λ3 − 2λ2 − λ+ 2 = 0 =⇒ λ2(λ− 2)− (λ− 2) = 0

=⇒ (λ− 2)(λ− 1)(λ+ 1) = 0

=⇒ yh = c1e
2t + c2e

t + c3e
−t.

Based on this fact, we now look for a particular solution of the form

yp = A sin t+B cos t.

Differentiating three times, one finds that

y′p = A cos t−B sin t, y′′p = −A sin t−B cos t, y′′′p = −A cos t+B sin t.

Once we now combine all these facts, we get

sin t = y′′′p − 2y′′p − y′p + 2yp = 2(2A+B) sin t+ 2(2B − A) cos t.

It easily follows that A = 1/5 and B = 1/10, hence

y = yh + yp = c1e
2t + c2e

t + c3e
−t +

sin t

5
+

cos t

10
.



7. Find all solutions of the non-homogeneous scalar ODE

y′′(t) + 2y′(t) + y(t) = 2e−t + t.

• To find the homogeneous solution yh, we note that

λ2 + 2λ+ 1 = 0 =⇒ (λ+ 1)2 = 0 =⇒ yh = c1e
−t + c2te

−t.

Based on this fact, we now look for a particular solution of the form

yp = At2e−t +Bt+ C.

Differentiating twice, one finds that

y′p = 2Ate−t − At2e−t +B

y′′p = 2Ae−t − 4Ate−t + At2e−t

y′′p + 2y′p + yp = 2Ae−t +Bt+ 2B + C.

In particular, yp is a solution when 2A = 2, B = 1 and C = −2B, so

yp = t2e−t + t− 2 =⇒ y = yh + yp = c1e
−t + c2te

−t + t2e−t + t− 2.

8. Find all solutions of the non-homogeneous scalar ODE

y′′(t)− 3y′(t) + 2y(t) = t2 + t+ 1.

• To find the homogeneous solution yh, we note that

λ2 − 3λ+ 2 = 0 =⇒ (λ− 1)(λ− 2) = 0 =⇒ yh = c1e
t + c2e

2t.

Based on this fact, we now look for a particular solution of the form

yp = At2 +Bt+ C.

Differentiating twice, one finds that

y′′p − 3y′p + 2yp = 2A− 3(2At+B) + 2(At2 +Bt+ C)

= 2At2 + (2B − 6A)t+ (2C − 3B + 2A).

In particular, we need to have 2A = 2B − 6A = 2C − 3B + 2A = 1 and so

A = 1/2, B = 2, C = 3 =⇒ y = c1e
t + c2e

2t +
t2

2
+ 2t+ 3.



9. Determine the unique solution of the initial value problem

x′(t) = x− y, y′(t) = x+ y, x(0) = x0, y(0) = y0.

• To solve the initial value problem, we first express it as a system, namely

y′(t) = Ay(t), y(0) =

[
x0

y0

]
, A =

[
1 −1
1 1

]
.

Now, the eigenvalues of A are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 2λ+ 2 = 0 =⇒ λ = 1± i.

Since the eigenvalues are distinct, A is diagonalizable, and it is easy to check that

v1 =

[
1

−i

]
, v2 =

[
1
i

]
are eigenvectors corresponding to λ = 1 + i and λ = 1− i, respectively. Thus,

P =

[
1 1

−i i

]
=⇒ P−1AP =

[
1 + i 0
0 1− i

]
=⇒ etA = P · etP−1AP · P−1 = et

[
cos t − sin t
sin t cos t

]
and the unique solution of the initial value problem is

y(t) = etAy(0) = et
[
x0 cos t− y0 sin t
x0 sin t+ y0 cos t

]
.

10. Show that E(t) = x(t)2 + y(t)2 is decreasing for all solutions x, y of the system

x′(t) = −xy3 − x, y′(t) = x2y2 − y.

• Indeed, E(t) is decreasing because

E ′(t) = 2xx′ + 2yy′ = −����
2x2y3 − 2x2 +����

2x2y3 − 2y2 ≤ 0.


