
ODEs, Homework #2
Solutions

1. Find all solutions of the system of ODEs

x′(t) = −12x(t)− 16y(t), y′(t) = 11x(t) + 15y(t).

• First of all, let us use vectors to write the given system in the form

y =

[
x
y

]
=⇒ y′ = Ay, A =

[
−12 −16
11 15

]
.

Since trA = 3 and detA = −4, the eigenvalues of A are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 3λ− 4 = 0 =⇒ λ = −1, 4.

Moreover, it is easy to check that

v1 =

[
16

−11

]
, v2 =

[
1

−1

]
are eigenvectors corresponding to λ = −1 and λ = 4, respectively. This implies

y = c1e
−tv1 + c2e

4tv2 =

[
16c1e

−t + c2e
4t

−11c1e
−t − c2e

4t

]
.

2. Let x0, v0 ∈ R be given. Find the unique solution of the initial value problem

x′′(t)− 3x′(t) + 2x(t) = 0, x(0) = x0, x′(0) = v0.

• In this case, the associated polynomial equation is

λ2 − 3λ+ 2 = 0 =⇒ (λ− 1)(λ− 2) = 0 =⇒ λ = 1, 2.

Since the two roots are distinct, the solution is given by

x(t) = c1e
t + c2e

2t =⇒ x′(t) = c1e
t + 2c2e

2t.

To ensure that the initial conditions are satisfied, we need to ensure

c1 + c2 = x0, c1 + 2c2 = v0 =⇒ c1 = 2x0 − v0, c2 = v0 − x0.

In particular, the unique solution of the initial value problem is

x(t) = (2x0 − v0)e
t + (v0 − x0)e

2t.



3. The system y′ = Ay can always be solved directly when A is upper triangular. Prove
this in the case that A is 2× 2 upper triangular with constant entries, say[

x
y

]′
=

[
a b
0 c

] [
x
y

]
for some a, b, c ∈ R. Hint: solve the second equation and then solve the first.

• The second equation is separable, so we can easily solve it to get

dy

dt
= cy =⇒

∫
dy

y
=

∫
c dt =⇒ log y = ct+ C0.

In particular, y = C1e
ct and we can now turn to the first equation, namely

x′ = ax+ by =⇒ x′ − ax = by = bC1e
ct.

This is a first-order linear equation with integrating factor

µ(t) = exp

(
−a

∫
dt

)
= e−at.

Multiplying by this factor gives a perfect derivative on the left, and we get

(e−atx)′ = bC1e
ct−at.

In the case that a ̸= c, the last equation implies

e−atx =
bC1e

ct−at

c− a
+ C2 =⇒ x = C3e

ct + C2e
at.

In the case that a = c, on the other hand, it implies

e−atx = bC1t+ C2 =⇒ x = C3te
at + C2e

at.

4. Compute the exponential etA when A =

[
1 2
4 3

]
.

• In this case, trA = 4 and detA = −5, so the eigenvalues of A are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 4λ− 5 = 0 =⇒ λ = −1, 5.

Since the eigenvalues are distinct, A is diagonalizable, and it is easy to check that

v1 =

[
−1
1

]
, v2 =

[
1
2

]
are eigenvectors corresponding to λ = −1 and λ = 5, respectively. In particular,

P =

[
−1 1
1 2

]
=⇒ P−1AP =

[
−1 0
0 5

]
=⇒ etP

−1AP =

[
e−t 0
0 e5t

]
=⇒ etA = P · etP−1AP · P−1 =

1

3

[
e5t + 2e−t e5t − e−t

2e5t − 2e−t 2e5t + e−t

]
.



5. Find all solutions x = x(t) of the third-order equation x′′′ − x′′ − 4x′ + 4x = 0.

• In this case, the characteristic equation gives

λ3 − λ2 − 4λ+ 4 = 0 =⇒ λ2(λ− 1)− 4(λ− 1) = 0

=⇒ (λ2 − 4)(λ− 1) = 0

=⇒ x = c1e
−2t + c2e

2t + c3e
t.

6. Compute the exponential etA when A =

[
1 2
2 4

]
.

• In this case, trA = 5 and detA = 0, so the eigenvalues of A are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 5λ = 0 =⇒ λ = 0, 5.

Since the eigenvalues are distinct, A is diagonalizable, and it is easy to check that

v1 =

[
−2
1

]
, v2 =

[
1
2

]
are eigenvectors corresponding to λ = 0 and λ = 5, respectively. In particular,

P =

[
−2 1
1 2

]
=⇒ P−1AP =

[
0 0
0 5

]
=⇒ etP

−1AP =

[
e0t 0
0 e5t

]
=⇒ etA = P · etP−1AP · P−1 =

1

5

[
e5t + 4 2e5t − 2
2e5t − 2 4e5t + 1

]
.

7. Compute the exponential etA when

A =

1 1 1
0 2 1
0 0 3

 .

• The three eigenvalues are λ = 1, 2, 3 with corresponding eigenvectors

v1 =

10
0

 , v2 =

11
0

 , v3 =

11
1

 .

Letting P be the matrix whose columns are these three vectors, we now get

etA = P · etP−1AP · P−1 =

et e2t − et e3t − e2t

0 e2t e3t − e2t

0 0 e3t

 .



8. Find all solutions of the system of ODEs

x′(t) = −3x(t) + y(t), y′(t) = −7x(t) + 5y(t).

• First of all, let us use vectors to write the given system in the form

y =

[
x
y

]
=⇒ y′ = Ay, A =

[
−3 1
−7 5

]
.

Since trA = 2 and detA = −8, the eigenvalues of A are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 2λ− 8 = 0 =⇒ λ = −2, 4.

Moreover, it is easy to check that

v1 =

[
1
1

]
, v2 =

[
1
7

]
are eigenvectors corresponding to λ = −2 and λ = 4, respectively. This implies

y = c1e
−2tv1 + c2e

4tv2 =

[
c1e

−2t + c2e
4t

c1e
−2t + 7c2e

4t

]
.

9. Show that every solution of x′′(t) + 4x′(t) + 3x(t) = 0 is such that

lim
t→∞

x(t) = 0.

• In this case, the characteristic equation gives

λ2 + 4λ+ 3 = 0 =⇒ λ = −3,−1 =⇒ x(t) = c1e
−3t + c2e

−t

for some constants c1, c2. It is thus easy to see that lim
t→∞

x(t) = 0, indeed.

10. Determine the unique solution of the initial value problem

y′(t) = Ay(t), y(0) =

12
1

 , A =

1 0 4
0 1 2
0 0 3

 .

• In this case, λ = 1 is a double eigenvalue with corresponding eigenvectors

v1 =

10
0

 , v2 =

01
0

 .



There is also a simple eigenvalue, namely λ = 3, with corresponding eigenvector

v3 =

21
1

 .

Since three linearly independent eigenvectors exist, A is diagonalizable and

P =

1 0 2
0 1 1
0 0 1

 =⇒ P−1AP =

1 1
3


=⇒ etP

−1AP =

et et

e3t


=⇒ etA = P · etP−1AP · P−1 =

et 0 2e3t − 2et

et e3t − et

e3t

 .

In particular, the unique solution of the initial value problem is given by

y(t) = etAy(0) =

et 0 2e3t − 2et

et e3t − et

e3t

12
1

 =

2e3t − et

e3t + et

e3t

 .


