
ODEs, Homework #1
Solutions

1. Determine all functions y = y(t) such that y′ = 2ty2

1+t2
.

• Since the given equation is separable, we may separate variables to get

dy

dt
=

2ty2

1 + t2
⇐⇒

∫
y−2 dy =

∫
2t dt

1 + t2

⇐⇒ −y−1 = log(1 + t2) + C

⇐⇒ y = − 1

log(1 + t2) + C
.

2. Determine all functions y = y(x) such that y′ − y
x+1

= x.

• The given equation is first-order linear with integrating factor

µ(x) = exp

(
−
∫

dx

x+ 1

)
= exp

(
− log(x+ 1)

)
= (x+ 1)−1.

Multiplying by this factor, we get a perfect derivative on the left, so(
y

x+ 1

)′

=
x

x+ 1
= 1− 1

x+ 1
=⇒ y

x+ 1
= x− log(x+ 1) + C

=⇒ y = (x+ 1)
(
x− log(x+ 1) + C

)
.

3. Which of the following ODEs are linear? Which of those are homogeneous?

s2x′(s) + s4x(s) = s, t2y′′(t) + y(t)y′(t) = 1,

xy′′(x) + sin y(x) = 0, xy′′(x) + exy′(x) = 0.

• Only the first and the last ones are linear. Only the last one is homogeneous.

4. Find all solutions of the equation

y′(t)− y(t)

t log t
=

1

t
, t > 0.

• The given equation is first-order linear with integrating factor

µ(t) = exp

(
−
∫

dt

t log t

)
= exp

(
−
∫

du

u

)
,



where u = log t. This gives µ(t) = exp(− log u) = u−1 = (log t)−1 and thus(
y

log t

)′

=
1

t log t
=⇒ y

log t
=

∫
dt

t log t
=

∫
du

u

with u = log t as before. Evaluating the integral and simplifying, we now get

y

log t
= log u+ C = log(log t) + C =⇒ y =

(
log(log t) + C

)
log t.

5. Find the unique solution y = y(t) of the initial value problem

y′ = y(1− y) cos t, y(0) = y0.

Hint: separate variables and then use partial fractions.

• First of all, let us separate variables to get

dy

dt
= y(1− y) cos t =⇒

∫
dy

y(1− y)
=

∫
cos t dt.

To compute the integral on the left, one has to use partial fractions to find that

1

y(1− y)
=

1

y
+

1

1− y
.

Using this fact and a little bit of algebra, we now get

log y − log(1− y) = sin t+ C =⇒ log
y

1− y
= sin t+ C

=⇒ y

1− y
= esin t+C = Cesin t.

Due to the initial condition y(0) = y0, we must have y0
1−y0

= C and this gives

y

1− y
=

y0e
sin t

1− y0
=⇒ y(1− y0) = y0e

sin t − yy0e
sin t

=⇒ y =
y0e

sin t

1− y0 + y0esin t
.

6. Let a, y0 ∈ R and suppose that f is continuous. Solve the initial value problem

y′(t)− ay(t) = f(t), y(0) = y0.

• The given equation is first-order linear with integrating factor

µ(t) = exp

(
−
∫

a dt

)
= e−at.



We multiply the ODE by this factor and then we integrate to get

(ye−at)′ = e−atf(t) =⇒
[
y(s)e−as

]t
0
=

∫ t

0

e−asf(s) ds.

Next, we simplify the last equation and we solve for y; this gives

y(t)e−at − y0 =

∫ t

0

e−asf(s) ds =⇒ y(t) = y0e
at + eat

∫ t

0

e−asf(s) ds.

7. Show that the initial value problem

ty′(t) = y(t), y(0) = 1

has no solutions. Why doesn’t this contradict our existence result, Theorem 3.1?

• When t = 0, the ODE gives y(0) = 0 and this is contrary to the initial condition. The
fact that no solution exists does not contradict Theorem 3.1 because f(t, y) = y/t is
not continuous in any rectangle around the point (0, 1).

8. Solve the initial value problem

y′(t)− 2y(t)

t
= 4t3, y(1) = 3.

• The given equation is first-order linear with integrating factor

µ(t) = exp

(
−
∫

2

t
dt

)
= exp

(
−2 log t

)
= t−2.

We multiply the ODE by this factor and then we integrate to get

(t−2y)′ = 4t =⇒ t−2y = 2t2 + C =⇒ y = 2t4 + Ct2.

To ensure that y(1) = 3, we need to have C = 1, and this implies y = 2t4 + t2.

9. Find all solutions of the equation

(x− 2)y′(x) = (x− 1)y(x).

• Separating variables and integrating, one finds that

(x− 2)
dy

dx
= (x− 1)y =⇒

∫
dy

y
=

∫
x− 1

x− 2
dx =

∫
1 +

1

x− 2
dx.

Once we now compute these two integrals and simplify, we arrive at

log y = x+ log(x− 2) + C =⇒ y = C(x− 2)ex.



10. Show that the unique solution of the initial value problem

y′(t) =
2t

1 + t2
· sin y(t), y(0) = 1

exists for all times. Hint: use the associated integral equation.

• The unique local solution satisfies the associated integral equation

y(t) = 1 +

∫ t

0

2s

1 + s2
· sin y(s) ds.

Using the fact that | sin x| ≤ 1 for all x, we then easily find that

|y(t)| ≤ 1 +

∫ t

0

2s

1 + s2
ds = 1 + log(1 + t2).

Thus, y(t) is finite whenever t is finite and the solution exists for all times.


