ODEs, Homework #4 First five problems:

due Friday, April 1

1. Check that $y_1(t) = t$ is a solution of the second-order ODE

$$(t\cos t - \sin t)y'' + y't\sin t - y\sin t = 0$$

and then use this fact to find all solutions of the ODE.

2. Show that the zero solution is the only bounded solution of

$$x'(t) = x + xy^2, y'(t) = y - x^2y.$$

- **3.** For which of the following ODEs is the zero solution stable? Asymptotically stable?

- (a) x' = -2y, y' = 2x (b) x' = x + 2y, y' = x (c) x' = x 5y, y' = 5x + y
- **4.** For which of the following ODEs is the zero solution stable? Asymptotically stable?
- (a) $x'(t) = x(t)^2$
- (b) $x'(t) = -x(t)^3$
- (c) $x'(t) = x(t) \cos t$
- **5.** Use the substitution $z = \log y(t)$ to solve the equation $y' = y(\log y 1)$.

6. Check that $y_1(t) = e^t$ is a solution of the second-order ODE

$$(t^2 + t)y'' - (t^2 - 2)y' - (t + 2)y = 0$$

and then use this fact to find all solutions of the ODE.

7. Check whether the zero solution is a stable or unstable solution of y' = Ay when

$$A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & -5 \\ 1 & -3 \end{bmatrix}.$$

- **8.** Use the substitution w = 1/y(t) to solve the equation $ty' + y = y^2 \log t$.
- **9.** Show that the zero solution is an unstable solution of the system

$$x'(t) = x + 2y + xy,$$
 $y'(t) = y - 2x - x^{2}.$

Hint: find and solve the ODE satisfied by $E(t) = x(t)^2 + y(t)^2$.

10. Let $a \in \mathbb{R}$ and consider the second-order equation

$$y''(t) + 2ay'(t) + y(t) = 0.$$

For which values of a is the zero solution stable? Asymptotically stable?