
7 Exponentials: Some examples

Example 7.1 (2× 2 diagonalizable). We compute etA in the case that

A =

[
1 2
5 4

]
.

First of all, let us determine the eigenvalues of A by solving the equation

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 5λ− 6 = 0 =⇒ λ = −1, 6.

Since the eigenvalues are distinct, A is diagonalizable, and it is easy to check that

v1 =

[
1

−1

]
, v2 =

[
2
5

]
are eigenvectors corresponding to λ = −1 and λ = 6, respectively. This gives

P =

[
1 2

−1 5

]
=⇒ P−1AP =

[
−1 0
0 6

]
=⇒ etP

−1AP =

[
e−t 0
0 e6t

]
and we can now use formula (6.1) to conclude that

etA = P · etP−1AP · P−1 =

[
1 2

−1 5

] [
e−t 0
0 e6t

] [
5/7 −2/7
1/7 1/7

]
=

1

7

[
2e6t + 5e−t 2e6t − 2e−t

5e6t − 5e−t 5e6t + 2e−t

]
.

Example 7.2 (2× 2 with one Jordan block). We compute etA in the case that

A =

[
4 1

−4 0

]
.

In this case, the eigenvalues are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 4λ+ 4 = 0 =⇒ λ = 2

and it is easy to check that all eigenvectors are nonzero scalar multiples of

v1 =

[
1

−2

]
.

This means that we are missing an eigenvector and that the Jordan form is

P−1AP =

[
2 1
0 2

]
=⇒ etP

−1AP =

[
e2t te2t

0 e2t

]
.

To actually find the columns of P , we need to find vectors v1,v2 such that

Av1 = 2v1, Av2 = v1 + 2v2.



Thus, we can take v1 as the eigenvector above, and we can take v2 so that

(A− 2I)v2 = v1 =⇒ v2 =

[
a

1− 2a

]
=⇒ v2 =

[
0
1

]
,

for instance. Then these two vectors give the columns of P and we get

etA = P · etP−1AP · P−1 = e2t
[
1 + 2t t
−4t 1− 2t

]
.

Example 7.3 (3× 3 with one Jordan block). We compute etA in the case that

A =

3 1 2
0 3 4
0 0 3

 .

Here, the only eigenvalue is λ = 3 and all eigenvectors are nonzero scalar multiples of

v1 =

10
0

 .

It is easy to find vectors v2,v3 such that (A− 3I)v2 = v1 and (A− 3I)v3 = v2, say

v2 =

a1
0

 =

01
0

 , v3 =

 a
−1/2
1/4

 =

 0
−1/2
1/4

 .

Then these three vectors give the columns of P and we get

P =

1 0 0
0 1 −1/2
0 0 1/4

 =⇒ P−1AP =

3 1 0
3 1

3

 =⇒ etP
−1AP = e3t

1 t t2

2!
1 t

1

 .

Using this fact together with formula (6.1), it is now easy to check that

etA = P · etP−1AP · P−1 = e3t

1 t 2t2 + 2t
1 4t

1

 .

Example 7.4 (3× 3 with two Jordan blocks). We compute etA in the case that

A =

3 3 3
0 3 3
0 0 2

 .

In this case, λ = 2 is a simple eigenvalue with corresponding eigenvector

v3 =

 6
−3
1

 .



There is also a double eigenvalue, namely λ = 3, with only one eigenvector

v1 =

10
0


so we need to find a vector v2 such that (A− 3I)v2 = v1, say

v2 =

 a
1/3
0

 =

 0
1/3
0

 .

Then these three vectors give the columns of P and we get

P =

1 0 6
0 1/3 −3
0 0 1

 =⇒ P−1AP =

3 1
3

2

 =⇒ etP
−1AP =

e3t te3t

e3t

e2t

 .

Combining this fact with formula (6.1), we may thus conclude that

etA = P · etP−1AP · P−1 =

e3t 3te3t (9t− 6)e3t + 6e2t

e3t 3e3t − 3e2t

e2t

 .

Example 7.5 (2× 2 with complex eigenvalues). We compute etA in the case that

A =

[
5 3

−6 −1

]
.

In this case, we have trA = 4 and detA = 13, so the eigenvalues are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 4λ+ 13 = 0 =⇒ λ = 2± 3i.

Since the eigenvalues are distinct, A is diagonalizable, and it is easy to check that

v1 =

[
1

i− 1

]
, v2 =

[
1

−i− 1

]
are eigenvectors corresponding to λ = 2 + 3i and λ = 2− 3i, respectively. This gives

P =

[
1 1

i− 1 −i− 1

]
=⇒ P−1AP =

[
2 + 3i

2− 3i

]
and we can now use Euler’s formula eiθ = cos θ + i sin θ to get

etP
−1AP = e2t

[
cos(3t) + i sin(3t)

cos(3t)− i sin(3t)

]
.

Using formula (6.1) as before, we may finally deduce that

etA = P · etP−1AP · P−1 = e2t
[
cos(3t) + sin(3t) sin(3t)

−2 sin(3t) cos(3t)− sin(3t)

]
.


