6 Exponential of a matrix

Definition 6.1. Given a square matrix A, we define its exponential e as the series
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It is easy to check that this series converges for any square matrix A whatsoever.

Theorem 6.2 (Constant matrices). If A is a constant square matrix, then ®(t) = e i

a fundamental matrix for the system y'(t) = Ay. Moreover, the initial value problem
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y(t)=Ay,  y(0) =1y
has a unique solution which is defined for all times, namely y(t) = e/y.

Example 6.3 (Computation of e#*). When A4 is a diagonal matrix, we have
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When A is a 2 x 2 Jordan block, we have
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When A is a 3 x 3 Jordan block, we have
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Using these facts, one can compute the exponential of any square matrix A. Namely, one
may determine the Jordan form P~'AP and then use the formula
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to relate the exponential of the given matrix A to that of its Jordan form.
Lemma 6.4 (Product rule). If A, B are square matrices, then (AB)' = A’'B + AB'.

Lemma 6.5. If A, B are square matrices that commute, then e4*? = e4e”.



