
2010 final exam

1a. In this case, the characteristic equation gives

λ2 + 1 = 0 =⇒ λ = ± i =⇒ x(t) = c1 sin t+ c2 cos t

for some constants c1, c2. In particular, we have |x(t)| ≤ |c1|+ |c2|.

1b. The solution of this non-homogeneous equation has the form

x(t) = c1 sin t+ c2 cos t+ At sin t+Bt cos t

for some arbitrary constants c1, c2 and some constants A,B that one can determine, if
needed. Since x(t) is not a solution of the homogeneous equation, one of A,B must be
nonzero, and this already implies that x(t) is unbounded.

1c. In this case, the method of undetermined coefficients gives

x(t) = c1 sin t+ c2 cos t+ A sin(2t) +B cos(2t),

so the solution is easily seen to be bounded.

1d. Indeed, the ODE implies x(0) = 0 and this is contrary to the initial condition.

1e. Using separation of variables to solve the ODE, we get

t
dx

dt
= x =⇒

∫
dx

x
=

∫
dt

t
=⇒ log x = log t+ C.

Thus, x = Ct and the initial condition x(0) = 0 is satisfied for any C whatsoever.

2a. The given ODE is first-order linear with integrating factor

µ = exp

(
−
∫

t dt

t2 + 1

)
= exp

(
−1

2
log(t2 + 1)

)
= (t2 + 1)−1/2.

Multiplying by this factor and integrating, we now get

(µy)′ =
t√

t2 + 1
=⇒ µy =

∫
2t dt

2
√
t2 + 1

=

∫
du

2
√
u
=

√
u+ C

using the substitution u = t2 + 1. This also implies that

y√
t2 + 1

=
√
t2 + 1 + C =⇒ y = t2 + 1 + C

√
t2 + 1.

Since we need to have y(0) = 0, it easily follows that y = t2 + 1−
√
t2 + 1.



2b. Since z = y−1, we have z′ = −y−2y′, hence

z′ − Pz = −Q ⇐⇒ −y−2y′ − Py−1 = −Q ⇐⇒ y′ + Py = Qy2.

2c. Setting z = y−1 as in the previous part, we end up with the ODE

z′ − z

t
= − log t

t
,

which is first-order linear with integrating factor

µ = exp

(
−
∫

dt

t

)
= exp(− log t) = t−1.

We now multiply by this factor and integrate to get

(t−1z)′ = − log t

t2
=⇒ t−1z = −

∫
log t

t2
dt.

To compute the integral, let u = log t and dv = t−2dt. Then v = −t−1 and so∫
log t

t2
dt =

∫
u dv = uv −

∫
v du = −t−1 log t+

∫
t−2 dt.

Combining the last two equations, we now get

t−1z = t−1 log t−
∫

t−2 dt = t−1 log t+ t−1 + C,

so we may finally conclude that

z = log t+ 1 + Ct =⇒ y = z−1 = (log t+ 1 + Ct)−1.

3a. The fact that y1 = et is a solution follows by the computation

(t+ 1)y′′1 − (t+ 2)y′1 + y1 = (t+ 1− t− 2 + 1)et = 0.

We now use reduction of order to find a second solution of the form y2 = etv. Since

y2 = etv, y′2 = et(v + v′), y′′2 = et(v + 2v′ + v′′),

we see that y2 = etv is also a solution, provided that

0 = (t+ 1)y′′2 − (t+ 2)y′2 + y2 = (t+ 1)etv′′ + tetv′.

Dividing through by (t+ 1)et gives a linear ODE with integrating factor

µ = exp

(∫
t

t+ 1
dt

)
= exp

(∫
1− 1

t+ 1
dt

)
=

et

t+ 1
.



We now multiply by this factor and we integrate to get

(µv′)′ = 0 =⇒ v′ = C1/µ = C1e
−t(t+ 1).

Using this fact and an integration by parts, we conclude that

v = C1

∫
e−t(t+ 1) dt = −C1(t+ 1)e−t − C1e

−t + C2,

hence
y2 = etv = −C1(t+ 1)− C1 + C2e

t = −C1(t+ 2) + C2e
t.

3b. To find the homogeneous solution yh, we note that

λ3 − λ2 − 4λ+ 4 = 0 =⇒ λ2(λ− 1)− 4(λ− 1) = 0

=⇒ (λ− 1)(λ− 2)(λ+ 2) = 0

=⇒ yh = c1e
t + c2e

2t + c3e
−2t.

Based on this fact, we now look for a particular solution of the form

yp = Atet.

Differentiating three times, one finds that

y′p = Aet(t+ 1), y′′p = Aet(t+ 2), y′′′p = Aet(t+ 3).

In particular, y′′′p − y′′p − 4y′p + 4yp = −3Aet and this implies

A = −1 =⇒ yp = −tet =⇒ y = c1e
t + c2e

2t + c3e
−2t − tet.

4a. First of all, we compute the eigenvalues of the associated matrix, namely

A =

[
a 1
1 a

]
=⇒ λ2 − 2aλ+ (a2 − 1) = 0 =⇒ λ = a± 1.

If a < −1, then both eigenvalues are negative and the zero solution is asymptotically
stable. If a > −1, then one eigenvalue is positive and the zero solution is unstable.
In the remaining case a = −1, the eigenvalues are λ = −2, 0 and the zero solution is
stable but not asymptotically stable.

4b. Note that V is positive definite with

V ∗(x, y) = 2xx′ + 2yy′ = −2x2 + 4xy − 2ay2 = −2(x− y)2 + 2(1− a)y2.

It easily follows that V is a strict Lyapunov function if and only if a > 1.



5a. Since y = 1 is a solution, we have q(t) = 0. Since y = t2 is a solution, we have

2 + 2tp(t) + t2q(t) = 0 =⇒ p(t) = −1/t.

5b. Note that λ = 1 is a simple eigenvalue with corresponding eigenvector

v3 =

10
0

 .

There is also a double eigenvalue, namely λ = 2, with only one eigenvector

v1 =

21
0

 .

This means that we are missing an eigenvector and that the Jordan form is

P−1AP =

2 1 0
0 2 0
0 0 1

 =⇒ etP
−1AP =

e2t te2t

e2t

et

 .

To actually find the columns of P , we need to solve the equations

Av1 = 2v1, Av2 = v1 + 2v2, Av3 = v3.

Thus, we can take v1,v3 to be the eigenvectors above, and we can take v2 so that

(A− 2I)v2 = v1 =⇒ v2 =

 x
1 + x/2
1/2

 =⇒ v2 =

 0
1
1/2

 ,

for instance. Then these three vectors give the columns of P and we get

etA = P · etP−1AP · P−1 =

et 2e2t − 2et 4te2t − 4e2t + 4et

0 e2t 2te2t

0 0 e2t

 .


