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1. [5 points each] Prove each of the following statements.

(a) Every solution of x′′(t) + x(t) = 0 is bounded.

(b) Every solution of x′′(t) + x(t) = sin t is unbounded.

(c) Every solution of x′′(t) + x(t) = sin(2t) is bounded.

(d) The initial value problem tx′(t) = x(t), x(0) = 1 has no solutions.

(e) The initial value problem tx′(t) = x(t), x(0) = 0 has infinitely many solutions.

2. [25 points]

(a) [10 points] Determine the unique solution y = y(t) of the initial value problem

y′ − ty

t2 + 1
= t, y(0) = 0.

(b) [5 points] Show that y = y(t) is a nonzero solution of the nonlinear ODE

y′ + P (t)y = Q(t)y2

if and only if z = y−1 is a solution of the first-order linear ODE

z′ = P (t)z −Q(t).

(c) [10 points] Find all nonzero solutions y = y(t) of the nonlinear ODE

ty′ + y = y2 log t, t > 0.

3. [25 points]

(a) [15 points] Check that y1(t) = et is a solution of the second-order ODE

(t+ 1)y′′ − (t+ 2)y′ + y = 0

and then use this fact to find all solutions of the ODE.

(b) [10 points] Find all solutions y = y(t) of the third-order ODE

y′′′ − y′′ − 4y′ + 4y = 3et.



Page 3 of 3 XMA23261

4. [25 points]

(a) [15 points] Let a ∈ R be fixed and consider the autonomous linear system

x′(t) = ax(t) + y(t), y′(t) = x(t) + ay(t).

For which values of a is the zero solution stable? asymptotically stable?

(b) [10 points] Let a ∈ R be fixed and consider the autonomous linear system

x′(t) = −x(t) + y(t), y′(t) = x(t)− ay(t).

For which values of a is V (x, y) = x2 + y2 a strict Lyapunov function?

5. [25 points]

(a) [10 points] Find a second-order linear ODE of the form

y′′(t) + p(t)y′(t) + q(t)y(t) = 0, t > 0

such that its solutions are given by y(t) = C1 + C2t
2 for some c1, c2 ∈ R.

(b) [15 points] Compute the matrix exponential etA in the case that

A =


1 2 0

0 2 2

0 0 2

 .
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