2009 final exam

1a. $x(t) = c_1 e^{-t} + c_2 e^{-2t}$ is both bounded and going to zero.

1b. $x(t) = c_1 e^{-t} \sin(t\sqrt{2}) + c_2 e^{-t} \cos(t\sqrt{2})$ is both bounded and going to zero.

1c. $x(t) = c_1 e^{3t} \sin t + c_2 e^{3t} \cos t$ could be unbounded and not going to zero.

1d. $x(t) = c_1 e^{-3t} \sin t + c_2 e^{-3t} \cos t$ is both bounded and going to zero.

1e. $x(t) = c_1 e^{-t} + c_2 \sin t + c_3 \cos t$ is bounded but need not go to zero.

2a. The given ODE is first-order linear with integrating factor

$$\mu = \exp\left(-\int \frac{t \, dt}{t^2 + 1}\right) = \exp\left(-\frac{1}{2}\log(t^2 + 1)\right) = (t^2 + 1)^{-1/2}.$$

Multiplying by this factor and integrating, we now get

$$(\mu y)' = \frac{t}{\sqrt{t^2 + 1}} \implies \mu y = \int \frac{2t \, dt}{2\sqrt{t^2 + 1}} = \int \frac{du}{2\sqrt{u}} = \sqrt{u} + C$$

using the substitution $u = t^2 + 1$. This also implies that

$$\frac{y}{\sqrt{t^2+1}} = \sqrt{t^2+1} + C \implies y = t^2+1 + C\sqrt{t^2+1}.$$

Since we need to have y(0) = 0, it easily follows that $y = t^2 + 1 - \sqrt{t^2 + 1}$.

2b. The given ODE is separable, so we may separate variables to get

$$\frac{dy}{dt} = (1+2t)(1+y) \implies \int \frac{dy}{1+y} = \int (1+2t) dt$$

$$\implies \log|1+y| = t + t^2 + C \implies y = Ce^{t+t^2} - 1.$$

Since we need to have y(0) = 2, it easily follows that $y = 3e^{t+t^2} - 1$.

2c. Since y = tz, we have y' = z + tz', hence y' = f(y/t) if and only if tz' = f(z) - z.

3a. The fact that $y_1 = e^t$ is a solution follows by the computation

$$(t-1)y_1'' - ty_1' + y_1 = (t-1-t+1)e^t = 0.$$

We now use reduction of order to find a second solution of the form $y_2 = e^t v$. Since

$$y_2 = e^t v,$$
 $y_2' = e^t (v + v'),$ $y_2'' = e^t (v + 2v' + v''),$

we see that $y_2 = e^t v$ is also a solution, provided that

$$0 = (t-1)y_2'' - ty_2' + y_2 = (t-1)e^t v'' + (t-2)e^t v'.$$

Dividing through by $(t-1)e^t$ gives a linear ODE with integrating factor

$$\mu = \exp\left(\int \frac{t-2}{t-1} dt\right) = \exp\left(\int 1 - \frac{1}{t-1} dt\right) = \frac{e^t}{t-1}.$$

We now multiply by this factor and we integrate to get

$$(\mu v')' = 0 \implies v' = C_1/\mu = C_1 e^{-t} (t-1).$$

Using this fact and an integration by parts, we conclude that

$$v = C_1 \int e^{-t}(t-1) dt = -C_1 t e^{-t} + C_2 \implies y_2 = -C_1 t + C_2 e^t.$$

3b. To find the homogeneous solution y_h , we note that

$$\lambda^{3} - \lambda^{2} - \lambda + 1 = 0 \implies \lambda^{2}(\lambda - 1) - (\lambda - 1) = 0$$
$$\implies (\lambda - 1)(\lambda - 1)(\lambda + 1) = 0$$
$$\implies y_{h} = c_{1}e^{t} + c_{2}te^{t} + c_{3}e^{-t}.$$

Based on this fact, we now look for a particular solution of the form

$$y_p = Ate^{-t}$$
.

Differentiating this expression three times, one finds that

$$y'_{p} = Ae^{-t}(1-t),$$
 $y''_{p} = Ae^{-t}(t-2),$ $y'''_{p} = Ae^{-t}(3-t).$

In particular, $y_p''' - y_p'' - y_p' + y_p = 4Ae^{-t}$ and this implies

$$A = 1 \implies y_p = te^{-t} \implies y = c_1e^t + c_2te^t + c_3e^{-t} + te^{-t}.$$

4a. First of all, we compute the eigenvalues of the associated matrix, namely

$$A = \begin{bmatrix} a & 1 \\ 1 & a \end{bmatrix} \implies \lambda^2 - 2a\lambda + (a^2 - 1) = 0 \implies \lambda = a \pm 1.$$

If a < -1, then both eigenvalues are negative and the zero solution is asymptotically stable. If a > -1, then one eigenvalue is positive and the zero solution is unstable. In the remaining case a = -1, the eigenvalues are $\lambda = -2, 0$ and the zero solution is stable but not asymptotically stable.

4b. Note that V is positive definite with

$$V^*(x,y) = 2xx' + 2yy' = -2x^2 + 4xy - 2ay^2 = -2(x-y)^2 + 2(1-a)y^2.$$

It easily follows that V is a strict Lyapunov function if and only if a > 1.

5a. Consider any two solutions of the ODE, say y_i and y_j . Subtracting the equations

$$y_i'' + py_i' + qy_i = r,$$

$$y_j'' + py_j' + qy_j = r,$$

one finds that $y_i - y_j$ satisfies the associated homogeneous ODE. Thus, each of

$$y_2 - y_1 = 2e^{-t}, y_3 - y_1 = e^{2t}$$

is a solution of the homogeneous ODE, so these two functions must actually generate the space of all solutions. In other words, every solution of the homogeneous ODE

$$y'' + py' + qy = 0$$

has the form $y = c_1 e^{-t} + c_2 e^{2t}$. This means that $\lambda_1 = -1$ and $\lambda_2 = 2$ are such that

$$\lambda^2 + p\lambda + q = 0 \implies p = -(\lambda_1 + \lambda_2) = -1, \qquad q = \lambda_1\lambda_2 = -2.$$

Since $y_1 = e^t$ is a solution of the non-homogeneous ODE, we also have

$$r = y_1'' + py_1' + qy_1 = e^t - e^t - 2e^t = -2e^t.$$

5b. We examine the roots of the associated quadratic equation

$$\lambda^2 + b\lambda + c = 0 \implies \lambda = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$
.

• If these roots are real, then they are both negative because

$$b^2 - 4c < b^2 \implies \sqrt{b^2 - 4c} < b$$
.

Since the solution is either $c_1e^{\lambda_1t} + c_2e^{\lambda_2t}$ or $c_1e^{\lambda_1t} + c_2te^{\lambda_1t}$ and the λ_i 's are negative, the solution does go to zero as $t \to \infty$.

• If the roots are not real, then we have $\lambda = -\frac{b}{2} \pm i\gamma$ for some $\gamma \in \mathbb{R}$ and so

$$y(t) = c_1 e^{-bt/2} \sin(\gamma t) + c_2 e^{-bt/2} \cos(\gamma t).$$

Since b > 0 by assumption, however, the solution still goes to zero as $t \to \infty$.