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2009 final exam

x(t) = cre™! + cpe™? is both bounded and going to zero.
x(t) = cre7tsin(tyv/2) + cee~ cos(tv/2) is both bounded and going to zero.
2(t) = cre3tsint + cpe3t cost could be unbounded and not going to zero.
z(t) = cre 3 sint + cpe ™3 cost is both bounded and going to zero.

)

The given ODE is first-order linear with integrating factor

tdt 1
o () = (< s ) = 5 1

Multiplying by this factor and integrating, we now get

, t / ot dt du
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using the substitution u = ¢* + 1. This also implies that

y . 2 _2 2
\/m—\/t +14C = y=t*4+14+CVE2+1.

Since we need to have y(0) = 0, it easily follows that y =t + 1 — V{2 + 1.

The given ODE is separable, so we may separate variables to get

% =1+2)(1+y = /1d+—yy :/(1+2t)dt
= log[l+y|=t+t*+C = y=Cet — 1.
Since we need to have y(0) = 2, it easily follows that y = 3e'+* — 1.
Since y = tz, we have ' = z + t2/, hence vy = f(y/t) if and only if ¢z’ = f(z) — 2.
The fact that y; = € is a solution follows by the computation

(t=Dyf =ty +yi = (t—1—t+1e' =0.

We now use reduction of order to find a second solution of the form y; = e'v. Since

/

Yo = €'v, vy = e'(v+ 1), Yy =e'(v+ 20 + "),
we see that y, = e'v is also a solution, provided that

0=(t—1)yy —tyy +y2 = (t — 1)e"" + (t — 2)e"0’.
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Dividing through by (¢ — 1)e’ gives a linear ODE with integrating factor

t—2 1 et
1 exp(/t_ldt) exp(/ t_1dt) o

We now multiply by this factor and we integrate to get

(') =0 = v =0C/u=Cie'(t—-1).

Using this fact and an integration by parts, we conclude that

v = Cl /6_t(t - 1) dt = —C’lte_t + 02 — Y2 = —Clt + Cget.

To find the homogeneous solution 3, we note that

M-XN-A+1=0 = XO-1)-1-1)=0
— A=-1DA-DMX+1)=0

—  y, =cie' +cote’ + czeh

Based on this fact, we now look for a particular solution of the form
y, = Ate™".
Differentiating this expression three times, one finds that
y, = Ae”'(1—1), y, = Ae”'(t — 2), y, = Ae”'(3—1t).

In particular, y””

o — ) — Y, +yp = 4Ae™" and this implies

A=1 = y,= te! = y=-cie' +cote! +cget +te .
First of all, we compute the eigenvalues of the associated matrix, namely

A:h clb} — N =20+ (@-1)=0 = A=atl

If a < —1, then both eigenvalues are negative and the zero solution is asymptotically
stable. If @ > —1, then one eigenvalue is positive and the zero solution is unstable.
In the remaining case a = —1, the eigenvalues are A = —2,0 and the zero solution is
stable but not asymptotically stable.

Note that V' is positive definite with
V*(z,y) = 222’ + 2y’ = —22% + 4oy — 2ay* = —2(x — y)* +2(1 — a)y’.

It easily follows that V' is a strict Lyapunov function if and only if a > 1.



5a. Consider any two solutions of the ODE, say y; and y;. Subtracting the equations

5b.

v+ oy +aqyi =1,
yi + oy +aqyp =,

one finds that y; — y; satisfies the associated homogeneous ODE. Thus, each of
Yo — 1 = 2e7, ys — 1 = €

is a solution of the homogeneous ODE, so these two functions must actually generate
the space of all solutions. In other words, every solution of the homogeneous ODE

y'+py +qy=0
has the form y = cie™" + cpe?*. This means that \; = —1 and Ay = 2 are such that
N+pr+g=0 = p=—M+X)=-1, g¢g=Nh=-2
Since y; = €' is a solution of the non-homogeneous ODE, we also have

r =y +py,+qu =e" — e — 2 = —2¢.

We examine the roots of the associated quadratic equation

—b+b? —4c
5 .

N+bh+e=0 = I=

If these roots are real, then they are both negative because

b —de<b? = Vb2 —4dc<b.

Since the solution is either c;eM? 4 cpe?! or c;eMt 4 cote? and the \;’s are negative,

the solution does go to zero as t — oo.

If the roots are not real, then we have A = —g + 77y for some v € R and so
y(t) = cre™ 2 sin(yt) + coe ™% cos(t).

Since b > 0 by assumption, however, the solution still goes to zero as t — oo.



