
2009 final exam

1a. x(t) = c1e
−t + c2e

−2t is both bounded and going to zero.

1b. x(t) = c1e
−t sin(t

√
2 ) + c2e

−t cos(t
√
2 ) is both bounded and going to zero.

1c. x(t) = c1e
3t sin t+ c2e

3t cos t could be unbounded and not going to zero.

1d. x(t) = c1e
−3t sin t+ c2e

−3t cos t is both bounded and going to zero.

1e. x(t) = c1e
−t + c2 sin t+ c3 cos t is bounded but need not go to zero.

2a. The given ODE is first-order linear with integrating factor

µ = exp

(
−
∫

t dt

t2 + 1

)
= exp

(
−1

2
log(t2 + 1)

)
= (t2 + 1)−1/2.

Multiplying by this factor and integrating, we now get

(µy)′ =
t√

t2 + 1
=⇒ µy =

∫
2t dt

2
√
t2 + 1

=

∫
du

2
√
u
=

√
u+ C

using the substitution u = t2 + 1. This also implies that

y√
t2 + 1

=
√
t2 + 1 + C =⇒ y = t2 + 1 + C

√
t2 + 1.

Since we need to have y(0) = 0, it easily follows that y = t2 + 1−
√
t2 + 1.

2b. The given ODE is separable, so we may separate variables to get

dy

dt
= (1 + 2t)(1 + y) =⇒

∫
dy

1 + y
=

∫
(1 + 2t) dt

=⇒ log |1 + y| = t+ t2 + C =⇒ y = Cet+t2 − 1.

Since we need to have y(0) = 2, it easily follows that y = 3et+t2 − 1.

2c. Since y = tz, we have y′ = z + tz′, hence y′ = f(y/t) if and only if tz′ = f(z)− z.

3a. The fact that y1 = et is a solution follows by the computation

(t− 1)y′′1 − ty′1 + y1 = (t− 1− t+ 1)et = 0.

We now use reduction of order to find a second solution of the form y2 = etv. Since

y2 = etv, y′2 = et(v + v′), y′′2 = et(v + 2v′ + v′′),

we see that y2 = etv is also a solution, provided that

0 = (t− 1)y′′2 − ty′2 + y2 = (t− 1)etv′′ + (t− 2)etv′.



Dividing through by (t− 1)et gives a linear ODE with integrating factor

µ = exp

(∫
t− 2

t− 1
dt

)
= exp

(∫
1− 1

t− 1
dt

)
=

et

t− 1
.

We now multiply by this factor and we integrate to get

(µv′)′ = 0 =⇒ v′ = C1/µ = C1e
−t(t− 1).

Using this fact and an integration by parts, we conclude that

v = C1

∫
e−t(t− 1) dt = −C1te

−t + C2 =⇒ y2 = −C1t+ C2e
t.

3b. To find the homogeneous solution yh, we note that

λ3 − λ2 − λ+ 1 = 0 =⇒ λ2(λ− 1)− (λ− 1) = 0

=⇒ (λ− 1)(λ− 1)(λ+ 1) = 0

=⇒ yh = c1e
t + c2te

t + c3e
−t.

Based on this fact, we now look for a particular solution of the form

yp = Ate−t.

Differentiating this expression three times, one finds that

y′p = Ae−t(1− t), y′′p = Ae−t(t− 2), y′′′p = Ae−t(3− t).

In particular, y′′′p − y′′p − y′p + yp = 4Ae−t and this implies

A = 1 =⇒ yp = te−t =⇒ y = c1e
t + c2te

t + c3e
−t + te−t.

4a. First of all, we compute the eigenvalues of the associated matrix, namely

A =

[
a 1
1 a

]
=⇒ λ2 − 2aλ+ (a2 − 1) = 0 =⇒ λ = a± 1.

If a < −1, then both eigenvalues are negative and the zero solution is asymptotically
stable. If a > −1, then one eigenvalue is positive and the zero solution is unstable.
In the remaining case a = −1, the eigenvalues are λ = −2, 0 and the zero solution is
stable but not asymptotically stable.

4b. Note that V is positive definite with

V ∗(x, y) = 2xx′ + 2yy′ = −2x2 + 4xy − 2ay2 = −2(x− y)2 + 2(1− a)y2.

It easily follows that V is a strict Lyapunov function if and only if a > 1.



5a. Consider any two solutions of the ODE, say yi and yj. Subtracting the equations

y′′i + py′i + qyi = r,

y′′j + py′j + qyj = r,

one finds that yi − yj satisfies the associated homogeneous ODE. Thus, each of

y2 − y1 = 2e−t, y3 − y1 = e2t

is a solution of the homogeneous ODE, so these two functions must actually generate
the space of all solutions. In other words, every solution of the homogeneous ODE

y′′ + py′ + qy = 0

has the form y = c1e
−t + c2e

2t. This means that λ1 = −1 and λ2 = 2 are such that

λ2 + pλ+ q = 0 =⇒ p = −(λ1 + λ2) = −1, q = λ1λ2 = −2.

Since y1 = et is a solution of the non-homogeneous ODE, we also have

r = y′′1 + py′1 + qy1 = et − et − 2et = −2et.

5b. We examine the roots of the associated quadratic equation

λ2 + bλ+ c = 0 =⇒ λ =
−b±

√
b2 − 4c

2
.

• If these roots are real, then they are both negative because

b2 − 4c < b2 =⇒
√
b2 − 4c < b.

Since the solution is either c1e
λ1t + c2e

λ2t or c1e
λ1t + c2te

λ1t and the λi’s are negative,
the solution does go to zero as t → ∞.

• If the roots are not real, then we have λ = − b
2
± iγ for some γ ∈ R and so

y(t) = c1e
−bt/2 sin(γt) + c2e

−bt/2 cos(γt).

Since b > 0 by assumption, however, the solution still goes to zero as t → ∞.


