
2008 final exam

1a. Only (ii), (iii) and (v) are linear. Only (ii) and (v) are homogeneous.

1b. When it comes to the first matrix, its eigenvalues are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 2λ+ 1 = 0 =⇒ λ = 1.

Since there is only one eigenvalue, we need to look at the nullspace of A− λI, namely

A− I =

[
2 −1
4 −2

]
=⇒ N (A− I) =

{[
x
2x

]
: x ∈ R

}
.

Pick any vector v2 which is not in this nullspace and let v1 = (A− I)v2, say

v2 =

[
1
0

]
, v1 = (A− I)v2 =

[
2 −1
4 −2

] [
1
0

]
=

[
2
4

]
.

Then these two vectors give rise to a Jordan basis and we have

P =

[
2 1
4 0

]
=⇒ P−1AP =

[
1 1
0 1

]
=⇒ etP

−1AP =

[
et tet

0 et

]
=⇒ etA = P · etP−1AP · P−1 = et

[
1 + 2t −t
4t 1− 2t

]
.

• When it comes to the second matrix, note that B = A + I is a matrix whose entries
are all equal to 1. It easily follows that B2 = 3B, hence

B3 = 3B2 = 32B, B4 = 32B2 = 33B,

and so on. Using induction and the definition of the exponential, we now get

etB =
∞∑
n=0

tnBn

n!
= I +

∞∑
n=1

tn3n−1B

n!
= I +

1

3

∞∑
n=1

(3t)n

n!
B = I +

e3t − 1

3
B.

Since B = A+ I by above, this also implies

etA = etBe−tI =

(
I +

e3t − 1

3
B

)
e−t =

e2t + 2e−t

3
I +

e2t − e−t

3
A.

That is, all diagonal entries of etA are e2t+2e−t

3
and all other entries are e2t−e−t

3
.

2a. There are obviously many different choices that will do. For instance, take t = 1 and

A =

[
0 1
0 0

]
, B =

[
0 0
0 1

]
.
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Then A is a Jordan block and B is diagonal, so one can easily compute

eAeB =

[
1 1
0 1

] [
1 0
0 e

]
=

[
1 e
0 e

]
,

eBeA =

[
1 0
0 e

] [
1 1
0 1

]
=

[
1 1
0 e

]
.

To compute the exponential of A+B, we now use the fact that

A+B =

[
0 1
0 1

]
=⇒ (A+B)n =

[
0 1
0 1

]
= A+B

for each n ≥ 1. In view of the definition of the exponential, this gives

eA+B =
∞∑
n=0

1

n!
(A+B)n = I +

∞∑
n=1

1

n!
(A+B)

= I + (e− 1)(A+B) =

[
1 e− 1
0 e

]
so the three matrices eAeB, eBeA and eA+B are all distinct.

2b. Differentiating the first equation twice, one finds that

(A+B)2et(A+B) = A2etAetB + 2AetABetB + etAB2etB.

Setting t = 0 and simplifying, one thus arrives at

A2 + AB +BA+B2 = A2 + 2AB +B2 =⇒ BA = AB.

In fact, the same argument applies, if one starts with any of the given equations.

2c. To find the homogeneous solution xh, we note that

λ2 + 1 = 0 =⇒ λ = ± i =⇒ xh = c1 sin t+ c2 cos t.

Based on this fact, we now look for a particular solution of the form

xp = At2 +Bt+ C =⇒ x′
p = 2At+B =⇒ x′′

p = 2A.

To say that xp is a solution of the given ODE is to say that

t2 = x′′
p + xp = At2 +Bt+ C + 2A.

This gives A = 1, B = 0 and also C = −2A = −2, hence

xp = t2 − 2 =⇒ x = c1 sin t+ c2 cos t+ t2 − 2.

Once we now note that x(0) = c2 − 2 and x′(0) = c1, it easily follows that

c2 − 2 = ξ, c1 = η =⇒ x = η sin t+ (ξ + 2) cos t+ t2 − 2.
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3a. Both equations are first-order linear with integrating factor

µ = exp

(∫
2t dt

)
= et

2

.

When it comes to the first equation, one has

x′ + 2tx = 0 =⇒ (µx)′ = 0 =⇒ x = C/µ = Ce−t2 .

When it comes to the second equation, one similarly has

x′ + 2tx = t =⇒ (µx)′ = tet
2

=⇒ µx =
1

2
et

2

+ C =⇒ x =
1

2
+ Ce−t2 .

3b. Using reduction of order, one can find a second solution x2 = x1v by solving

v′′ +

(
2x′

1

x1

− 4t3 + 2t

t4 + t2 + 4

)
v′ = 0.

Noting that ∫
2x′

1

x1

− 4t3 + 2t

t4 + t2 + 4
dt = 2 log x1 − log(t4 + t2 + 4),

we see that an integrating factor is given by

µ = exp

(∫
2x′

1

x1

− 4t3 + 2t

t4 + t2 + 4
dt

)
=

x2
1

t4 + t2 + 4
=

t2(t2 − 4)2

t4 + t2 + 4
.

We now multiply by this factor and we integrate to get

(µv′)′ = 0 =⇒ v′ =
C1

µ
=

C1(t
4 + t2 + 4)

t2(t2 − 4)2
.

To integrate the function on the right, one needs to use partial fractions to write

t4 + t2 + 4

t2(t2 − 4)2
=

1/4

t2
+

3/8

(t− 2)2
+

3/8

(t+ 2)2
.

Integrating the last equation and simplifying, we conclude that

v = −C1

(
1/4

t
+

3/8

t− 2
+

3/8

t+ 2

)
+ C2 = −C1(t

2 − 1)

t(t2 − 4)
+ C2.

In particular, the desired solution x2 = x1v of the given ODE is

x2 = x1v = −C1(t
2 − 1) + C2t(t

2 − 4).
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4a. I will not ask for any definitions.

4b. Indeed, E(t) = x′(t)2 + x(t)4 is such that E ′(t) = 2x′(x′′ + 2x3) = 0.

4c. Since x′(t)2 + x(t)4 = E(t) = E(0), both x′(t) and x(t) are bounded at all times.

4d. Write the second-order equation x′′ + 2x3 = 0 as a first-order system, namely

x′ = y, y′ = x′′ = −2x3.

According to part (b), this system has V (x, y) = x4 + y2 as a Lyapunov function and
so the origin is stable by the Lyapunov theorem.

4e. It is not asymptotically stable because V (x, y) = x4 + y2 is both positive definite and
conserved. That is, every solution which converges to the origin must satisfy

V (x0, y0) = lim
t→∞

V (x(t), y(t)) = V (0, 0) = 0 =⇒ (x0, y0) = (0, 0)

and so solutions which start out near the origin cannot really converge to it.

5a. I will not ask for any definitions.

5b. This is a linear system whose eigenvalues are given by

λ2 − (trA)λ+ detA = 0 =⇒ λ2 − 3aλ+ 2a2 = 0 =⇒ λ = a, 2a

so the origin is unstable when a > 0 and asymptotically stable when a < 0. To deal
with the remaining case a = 0, we note that

A =

[
2b −b
4b −2b

]
=⇒ A2 = 0 =⇒ etA = I + tA.

When a = 0 ̸= b, the entries of etAx0 are thus unbounded and the origin is unstable.
When a = b = 0, we have etAx0 = x0 so the origin is stable but not asymptotically.

5c. Note that V (x, y) = x2 + y2 measures distance from the origin and that

V ∗(x, y) = 2xx′ + 2yy′ = 2ax2(x2 + y2) + 2ay2(x2 + y2) = 2a(x2 + y2)2.

If a < 0, this makes V a strict Lyapunov function and so the origin is asymptotically
stable. If a = 0, then distance from the origin is conserved, so the origin is stable but
not asymptotically. If a > 0, finally, then the computation above gives

dV

dt
= 2aV 2 =⇒

∫
V −2 dV = 2a

∫
dt =⇒ −V −1 = 2at− V −1

0

=⇒ V (t) = (1/V0 − 2at)−1.

In particular, V (t) becomes arbitrarily large as t → 1
2aV0

so the origin is unstable.
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