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It is defined by the series e4 = S°°° 4 for each square matrix A.

It is not generally true that e
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The given identity is of the form A = PJP~!, where J is diagonal, and thus
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As for the solution to the initial value problem, this is given by x(t) = e'4x(0).

Indeed, A" = 2z2’ 4+ 2yy’ = 2zyz — 2zyz = 0 and similarly B’ = 2z2’ 4+ 222" = 0.

Indeed, we have z(t)? + y(t)> = 2(0)? 4+ y(0)? and also z(¢)* + z(t)* = x(0)* + z(0)2.

Let V(z,y,2) = A+ B = 22® + y* + 2z?. Then V is positive definite with V* = 0, so

the stability of the zero solution follows by the Lyapunov theorem.

. Using reduction of order, one can start with a solution x; of the ODE

"+ p(t)x + q(t)x =0

and construct a second solution o = x;v by solving the ODE
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In this case, we have
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so an integrating factor is given by
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Multiplying by this factor and integrating, we now get

4 t*—2t—1
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In order to compute the last integral, we first integrate by parts to get
/(t2 + D) At =t 4+ 1) + /2t2(t2 +1)72dt.
Using this formula and a little bit of algebra, we find that
t*—1 2t* 1 t
—— dt = — dt = —————+0C
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while the substitution u = 2 + 1 gives
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Once we now combine the last two equations, we arrive at
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Thus, the desired solution x5 = x1v of the given ODE is
To = (t2 -+ 1)1} = —Clt + Cl -+ Cz(tz -+ 1) = 01(1 — t) + Cg(tQ + 1)
5a. I will not ask for any definitions.

5b. Indeed, V is positive definite with V*(x,y) = 2z2’ + 2yy’ = —22% — 2y%.

6. Power series solutions are no longer covered in 216.



