MA121 Tutorial Problems #7
Solutions

. Letting o € R be fixed, find the radius of convergence of the binomial series
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One always uses the ratio test to check power series for convergence. In our case,
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so the series converges when |z| < 1 and diverges when |z| > 1. This also means that the
radius of convergence is R = 1.

. Compute each of the following sums in terms of known functions:
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Relating the first sum to the Taylor series for the exponential function, we get
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The second sum is related to the Taylor series for the sine function, namely
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To compute the third sum, we shall first shift the index of summation to write

2n)! b (2n)!

n=1

0o 1) 60 0 — 1)1 p6n—6 1 0 —1)7 (g3)2n
ZL_Z% D)™

- = _
“— (2n + 2)!
Relating the last sum to the Taylor series for the cosine function, we now get
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. Find the area of the region that lies between the graphs of f(x) = x + 2 and g(z) = 2.

First of all, let us note that the two graphs intersect when
r+2=2" = 2*-1r-2=0 = ax=-1,2.

Since a rough sketch of the graphs shows that the graph of f lies above the graph of g
between these two points, the desired area is given by
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. Find the volume of a sphere of radius r.

Let R be the region between the graph of f(z) = v/r2 — 22 and the z-axis over [—r,7].
Since a sphere of radius r arises by rotating R around the z-axis, its volume is
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. Let R be the region between the graph of f(x) = sinx and the x-azxis over [0, 7]. Find the
area of the region R and the volume of the solid obtained by rotating R around the x-axis.

Since sin x is both continuous and non-negative on [0, 7|, the area of the region R is
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Rotating R around the z-axis, one obtains a solid whose volume is given by
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