MA121 Tutorial Problems #6
Solutions

1. Test each of the following series for convergence:
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e To test the first series for convergence, we use the limit comparison test with
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Note that the limit comparison test is, in fact, applicable here because
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Since the series | b, is a divergent p-series, the series Y~ | a, must also diverge.

e To test the second series for convergence, we use the ratio test. In this case,
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is strictly less than 1, so the given series converges by the ratio test.

e When it comes to the third series, the fact that log x is increasing implies that
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Being bigger than a divergent p-series, the given series must thus diverge by comparison.

e To test the last series for convergence, we use the ratio test. In this case, we have
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Since L is strictly less than 1, the given series must then converge by the ratio test.



2. Test each of the following series for convergence:
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e The first series diverges because of the nth term test, namely because
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e To test the second series for convergence, we use the limit comparison test with
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Note that the limit comparison test is, in fact, applicable here because
. Ap, . n + 2 2 . n3 + 2”2
Iim — = lim 3 .nc = - =" _
n—oo b, n—oo N> + 1 n—00 n3+1

Since the series >~ | b, is a convergent p-series, the series Y > | a, must also converge.

e To test the third series for convergence, we use the ratio test. In this case, we have
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and this implies that
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Since e > 1, this limit is strictly less than 1 and the given series converges.

e To test the last series for convergence, we use the limit comparison test with
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Note that the limit comparison test is, in fact, applicable here because
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Since the series Y >° | b, is a divergent p-series, the series Y - | a, must also diverge.



3. Compute each of the following sums:
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e When it comes to the first sum, the formula for a geometric series gives
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e When it comes to the second sum, a similar computation gives
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