
MA121 Tutorial Problems #4
Solutions

1. Show that sin2 x + cos2 x = 1 for all x ∈ R.

Letting f(x) = sin2 x + cos2 x for convenience, one easily finds that

f ′(x) = 2 sin x(sin x)′ + 2 cos x(cos x)′ = 2 sin x cos x− 2 cos x sin x = 0.

This shows that f(x) is actually constant, hence f(x) = f(0) = sin2 0 + cos2 0 = 1.

2. Let f be a non-negative function which is integrable on [0, 1] with f(x) = 0 for all x ∈ Q.

Show that
∫ 1

0
f(x) dx = 0.

Suppose that P = {x0, x1, . . . , xn} is a partition of [0, 1]. Then we must clearly have

inf
[xk,xk+1]

f(x) = 0 for each 0 ≤ k ≤ n− 1

because f is non-negative and since every subinterval contains a rational. Thus,

S−(f, P ) =
n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk) = 0

as well. Taking the supremum of both sides, we conclude that

∫ 1

0

f(x) dx = sup
P
{S−(f, P )} = sup

P
{0} = 0.

3. Suppose f is continuous on [a, b]. Show that there exists some c ∈ (a, b) such that

∫ b

a

f(t) dt = (b− a) · f(c).

As a hint, apply the mean value theorem to the function F (x) =
∫ x

a
f(t) dt.

According to the mean value theorem, there exists some c ∈ (a, b) such that

F (b)− F (a)

b− a
= F ′(c).

In addition, we have F ′(x) = f(x) for all x, and we also have

F (a) =

∫ a

a

f(t) dt = 0, F (b) =

∫ b

a

f(t) dt.

Once we now combine all these facts, we may conclude that

F (b)− F (a) = (b− a) · F ′(c) =⇒
∫ b

a

f(t) dt = (b− a) · f(c).



4. Compute each of the following integrals:

∫
sin(1/x)

x2
dx,

∫
(x + 1)(x + 2)5 dx,

∫
x√

x + 1
dx,

∫
xex dx.

• For the first integral, the substitution u = 1/x = x−1 gives du = −x−2 dx so that

∫
sin(1/x)

x2
dx = −

∫
sin u du = cos u + C = cos(1/x) + C.

• For the second integral, set u = x + 2. This gives du = dx and x + 1 = u− 1, hence

∫
(x + 1)(x + 2)5 dx =

∫
(u− 1) u5 du =

∫
(u6 − u5) du

=
u7

7
− u6

6
+ C =

(x + 2)7

7
− (x + 2)6

6
+ C.

• For the third integral, set u = x + 1. This gives du = dx and x = u− 1 so that

∫
x√

x + 1
dx =

∫
u− 1√

u
du =

∫
u− 1

u1/2
du

=

∫ (
u1/2 − u−1/2

)
du =

2u3/2

3
− 2u1/2 + C

=
2(x + 1)3/2

3
− 2(x + 1)1/2 + C.

• For the last integral, one may integrate by parts to find that

∫
xex dx =

∫
x (ex)′ dx = xex −

∫
ex dx = xex − ex + C.

An alternative way of getting this answer is by using the tabular integration below.

Differentiating Integrating
x ex

1 ex

0 ex



5. Compute each of the following integrals:

∫
sin3 x dx,

∫
x

ex
dx,

∫
e
√

x dx,

∫
log x

x2
dx.

• To compute the first integral, it is convenient to write it in the form

∫
sin3 x dx =

∫
(1− cos2 x) sin x dx =

∫
sin x dx−

∫
cos2 x sin x dx.

Using the substitution u = cos x, we then get du = − sin x dx, hence also

∫
sin3 x dx = − cos x +

∫
u2 du = − cos x +

u3

3
+ C = − cos x +

cos3 x

3
+ C.

• For the second integral, one may integrate by parts to find that

∫
xe−x dx =

∫
x

(−e−x
)′

dx = −xe−x +

∫
e−x dx = −xe−x − e−x + C.

An alternative way of getting this answer is by using the tabular integration below.

Differentiating Integrating
x e−x

1 −e−x

0 e−x

• For the third integral, we set u =
√

x. This gives x = u2 so that dx = 2u du and

∫
e
√

x dx = 2

∫
ueu du.

Using our computation from the previous problem, we may thus conclude that

∫
e
√

x dx = 2ueu − 2eu + C = 2
√

x e
√

x − 2e
√

x + C.

• To compute the last integral, we integrate by parts to find that

∫
x−2 · log x dx =

∫ (−x−1
)′ · log x dx = −x−1 · log x +

∫
x−1 · (log x)′ dx

= −x−1 log x +

∫
x−2 dx = −x−1 log x− x−1 + C.


