
MA121 Tutorial Problems #3
Solutions

1. Let f be the function defined by

f(x) =

{
8x3+4x−3

2x−1
if x 6= 1/2

5 if x = 1/2

}
.

Show that f is continuous at all points.

Since f agrees with a rational function on the open interval (−∞, 1/2), it is continuous
on that interval by a result of ours. Similarly, f is continuous on (1/2, +∞) as well, so it
remains to check continuity at y = 1/2. In other words, it remains to check that

lim
x→1/2

f(x) = f(1/2).

Using division of polynomials to evaluate the limit, one now finds that

lim
x→1/2

f(x) = lim
x→1/2

8x3 + 4x− 3

2x− 1
= lim

x→1/2
(4x2 + 2x + 3).

Since limits of polynomials can be computed by simple substitution, this also implies

lim
x→1/2

f(x) = lim
x→1/2

(4x2 + 2x + 3) = 4 · 1

4
+ 2 · 1

2
+ 3 = 5 = f(1/2).

2. Evaluate each of the following limits:

lim
x→+∞

6x2 − 5

2− 3x2
, lim

x→−∞
6x3 − 5x2 + 2

1− 3x + x4
.

To compute the limit of a rational function as x → ±∞, one divides both the numerator
and the denominator by the highest power of x in the denominator. In our case,

lim
x→+∞

6x2 − 5

2− 3x2
= lim

x→+∞
6− 5/x2

2/x2 − 3
=

6− 0

0− 3
= −2

and a similar computation gives

lim
x→−∞

6x3 − 5x2 + 2

1− 3x + x4
= lim

x→−∞
6/x− 5/x2 + 2/x4

1/x4 − 3/x3 + 1
=

0− 0 + 0

0− 0 + 1
= 0.

3. Find the maximum value of f(x) = 3x4 − 16x3 + 18x2 over the closed interval [−1, 2].

Since we are dealing with a closed interval, it suffices to check the endpoints, the points
at which f ′ does not exist and the points at which f ′ is equal to zero. In our case,

f ′(x) = 12x3 − 48x2 + 36x = 12x(x2 − 4x + 3) = 12x(x− 1)(x− 3)



and the only points at which the maximum value may occur are

x = −1, x = 2, x = 0, x = 1, x = 3.

We exclude the rightmost point, as this fails to lie in [−1, 2], and we now compute

f(−1) = 37, f(2) = −8, f(0) = 0, f(1) = 5.

Based on these facts, we may finally conclude that the maximum value is f(−1) = 37.

4. Find the minimum value of f(x) = (2x2 − 5x + 2)3 over the closed interval [0, 1].

Since we are dealing with a closed interval, it suffices to check the endpoints, the points
at which f ′ does not exist and the points at which f ′ is equal to zero. In our case,

f ′(x) = 3(2x2 − 5x + 2)2 · (2x2 − 5x + 2)′

= 3(2x2 − 5x + 2)2 · (4x− 5)

is zero when x = 5/4 and also when the quadratic factor is zero, namely when

x =
5±√25− 4 · 2 · 2

2 · 2 =
5± 3

4
=⇒ x = 2, x = 1/2.

Since x = 5/4 and x = 2 do not lie in the given closed interval, this means that

x = 0, x = 1, x = 1/2

are the only points at which the minimum value may occur. Once we now compute

f(0) = 8, f(1) = −1, f(1/2) = 0,

we may finally conclude that the minimum value is f(1) = −1.

5. Find the values of x for which f ′(x) = 0 in each of the following cases:

f(x) =
x2

1 + x2
, f(x) = x(x2 − 9)4.

• When it comes to the first function, an application of the quotient rule gives

f ′(x) =
2x · (1 + x2)− 2x · x2

(1 + x2)2
=

2x

(1 + x2)2

and this is zero if and only if x = 0.

• When it comes to the second function, we have

f ′(x) = 1 · (x2 − 9)4 + x · 4(x2 − 9)3 · (x2 − 9)′

by the product and the chain rule. We simplify this expression and factor to get

f ′(x) = (x2 − 9)4 + 4x(x2 − 9)3 · 2x = (x2 − 9)3 · (x2 − 9 + 8x2)

= (x2 − 9)3 · 9(x2 − 1).

Based on this factorization, it is clear that f ′(x) = 0 when either x = ±3 or x = ±1.



6. Show that the polynomial f(x) = x3− 3x + 1 has three roots in the interval (−2, 2). As a
hint, you might wish to compute the values of f at the points ±2, ±1 and 0.

Being a polynomial, f is continuous on the closed interval [−2,−1] and we also have

f(−2) = −1 < 0, f(−1) = 3 > 0.

Thus, f must have a root in (−2,−1) by Bolzano’s theorem. Using the facts that

f(0) = 1 > 0, f(1) = −1 < 0, f(2) = 3 > 0,

we similarly find that another root exists in (0, 1) and that a third root exists in (1, 2).
In particular, f has three roots in (−2, 2), as needed.

7. Show that the polynomial f(x) = x3 − 4x2 − 3x + 1 has exactly one root in [0, 2].

Being a polynomial, f is continuous on the closed interval [0, 2] and we also have

f(0) = 1 > 0, f(2) = −13 < 0.

Thus, f has a root in (0, 2) by Bolzano’s theorem and this root certainly lies in [0, 2] as
well. Suppose now that f has two roots in [0, 2]. By Rolle’s theorem, f ′ must then have
a root in [0, 2] as well. On the other hand, the roots of f ′(x) = 3x2 − 8x− 3 are

x =
8±√64 + 4 · 3 · 3

2 · 3 =
8± 10

6
=⇒ x = 3, x = −1/3.

Since neither of those lies in [0, 2], we conclude that f cannot have two roots in [0, 2].


