
MA121 Tutorial Problems #2
Solutions

1. Show that there exists some 0 < x < 1 such that 4x3 + 3x = 2x2 + 2.

Let f(x) = 4x3 + 3x− 2x2− 2 for all x ∈ [0, 1]. Being a polynomial, f is then continuous
on the closed interval [0, 1]. Once we now note that

f(0) = −2 < 0, f(1) = 4 + 3− 2− 2 = 3 > 0,

we may use Bolzano’s theorem to conclude that f(x) = 0 for some x ∈ (0, 1). This also
implies that 4x3 + 3x = 2x2 + 2 for some 0 < x < 1, as needed.

2. Evaluate each of the following limits:

lim
x→1

6x3 − 5x2 − 3x + 2

x + 1
, lim

x→1

6x3 − 5x2 − 3x + 2

x− 1
.

• When it comes to the first limit, one easily finds that

lim
x→1

6x3 − 5x2 − 3x + 2

x + 1
=

6− 5− 3 + 2

1 + 1
=

0

2
= 0

because limits of rational functions can be computed by simple substitution.

• When it comes to the second limit, division of polynomials gives

lim
x→1

6x3 − 5x2 − 3x + 2

x− 1
= lim

x→1
(6x2 + x− 2) = 6 + 1− 2 = 5

because x 6= 1 and since limits of polynomials can be computed by simple substitution.

3. Determine the values of x for which 6x2 < 7x− 2.

We need to determine the values of x for which f(x) = 6x2 − 7x + 2 is negative. Note
that the two roots of this quadratic are given by

x =
7±√72 − 4 · 6 · 2

2 · 6 =
7± 1

12
=⇒ x = 1/2, x = 2/3.

This gives the factorization f(x) = 6(x− 1/2)(x− 2/3) and the sign of f(x) is now easy
to determine. In view of the table below, we have f(x) < 0 if and only if x ∈ (1/2, 2/3).

x 1/2 2/3
x− 1/2 − + +
x− 2/3 − − +

f(x) + − +



4. Let f be the function defined by

f(x) =

{
2x if x ∈ Q

5− 3x if x /∈ Q
}

.

Show that f is continuous at y = 1.

In this case, we have

|f(x)− f(1)| = |f(x)− 2| =
{

2|x− 1| if x ∈ Q
3|1− x| if x /∈ Q

}
.

Given any ε > 0, we can then set δ = ε/3 to find that

|x− 1| < δ =⇒ |f(x)− f(1)| ≤ 3|x− 1| < 3δ = ε.

5. Suppose that f is continuous on [0, 1] and that 0 < f(x) < 1 for all x ∈ [0, 1]. Show that
there exists some 0 < c < 1 such that f(c) = c.

Let g(x) = f(x)− x for all x ∈ [0, 1]. Being the difference of two continuous functions, g
is then continuous on the closed interval [0, 1]. Once we now note that

g(0) = f(0) > 0, g(1) = f(1)− 1 < 0,

we may use Bolzano’s theorem to conclude that g(c) = 0 for some c ∈ (0, 1). This also
implies that f(c) = c for some 0 < c < 1, as needed.

6. Determine the values of x for which x3 < 9x.

We need to determine the values of x for which

f(x) = x3 − 9x = x(x2 − 9) = x(x− 3)(x + 3)

is negative. By the table below, this is the case when either x < −3 or else 0 < x < 3.

x −3 0 3
x − − + +

x− 3 − − − +
x + 3 − + + +
f(x) − + − +

7. Let f be the function defined by

f(x) =

{
3x if x ≤ 1

4x− 1 if x > 1

}
.

Show that f is continuous at all points.



• Since f agrees with a polynomial on the open interval (−∞, 1) and since polynomials
are known to be continuous, it is clear that f is continuous on (−∞, 1). Using the exact
same argument, we find that f is continuous on the open interval (1, +∞) as well.

• To check continuity at the remaining point y = 1, let us first note that

|f(x)− f(1)| = |f(x)− 3| =
{

3|x− 1| if x ≤ 1
4|x− 1| if x > 1

}
.

Given any ε > 0, we can then set δ = ε/4 to find that

|x− 1| < δ =⇒ |f(x)− f(1)| ≤ 4|x− 1| < 4δ = ε.

This establishes continuity at y = 1 as well, so f is continuous at all points.

8. Show that the function f defined by

f(x) =

{
2x if x ≤ 1

x + 2 if x > 1

}

is discontinuous at y = 1.

We will show that the ε-δ definition of continuity fails when ε = 1. Suppose it does not
fail. Since f(1) = 2, there must then exist some δ > 0 such that

|x− 1| < δ =⇒ |f(x)− 2| < 1. (∗)

Let us now examine the last equation for the choice x = 1 + δ
2
. On one hand, we have

|x− 1| = δ

2
< δ,

so the assumption in equation (∗) holds. On the other hand, we also have

|f(x)− 2| = |x + 2− 2| = 1 +
δ

2
> 1

because x = 1 + δ
2

> 1 here. This actually violates the conclusion in equation (∗).


