
MA121 Tutorial Problems #1
Solutions

1. Make a table listing the min, inf, max and sup of each of the following sets; write DNE
for all quantities which fail to exist. You need not justify any of your answers.

(a) A =
{
n ∈ N : 1

n
> 1

3

}

(b) B = {x ∈ R : x > 1 and 2x ≤ 5}
(c) C = {x ∈ Z : x > 1 and 2x ≤ 5}

(d) D = {x ∈ R : x < y for all y > 0}
(e) E = {x ∈ R : x > y for all y > 0}

• A complete list of answers is provided by the following table.

min inf max sup
A 1 1 2 2
B DNE 1 5/2 5/2
C 2 2 2 2
D DNE DNE 0 0
E DNE DNE DNE DNE

• The set A contains all n ∈ N with n < 3; this means that A = {1, 2}.
• The set B contains all x ∈ R with 1 < x ≤ 5/2; this means that B = (1, 5/2].

• The set C contains all integers x with 1 < x ≤ 5/2; this means that C = {2}.
• The set D contains the real numbers x which are smaller than all positive reals; this
means that D = (−∞, 0].

• The set E contains the real numbers x which are bigger than all positive reals; as you
can easily convince yourselves, there are no such real numbers, hence E is empty.

2. Let x ∈ R be such that x > −1. Show that (1 + x)n ≥ 1 + nx for all n ∈ N.

• We use induction to prove the given inequality for all n ∈ N.

• When n = 1, the given inequality holds because (1 + x)1 = 1 + x = 1 + nx.

• Suppose that the inequality holds for some n, in which case

(1 + x)n ≥ 1 + nx.

Since 1 + x > 0 by assumption, we may then multiply this inequality by 1 + x to get

(1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + (n + 1)x + nx2 ≥ 1 + (n + 1)x

because nx2 ≥ 0. This actually proves the given inequality for n + 1, as needed.



3. Let f(x) = x2 − 4x for all x ∈ R. Show that inf f(x) = −4, whereas inf
0≤x≤1

f(x) = −3.

• To prove the first statement, it suffices to show that min f(x) = −4. Once a minimum
is known to exist, that is, the infimum also does and the two are equal. Note that

f(x) + 4 = x2 − 4x + 4 = (x− 2)2 ≥ 0

and that equality holds in the last inequality when x = 2. In particular, f(x) ≥ −4 for
all x ∈ R and we also have f(x) = −4 when x = 2, hence min f(x) = −4.

• The proof of the second statement is quite similar. In this case, one notes that

f(x) + 3 = x2 − 4x + 3 = (x− 1)(x− 3) ≥ 0

for all 0 ≤ x ≤ 1 and that equality holds in the above inequality when x = 1. Based on
these facts, we have min

0≤x≤1
f(x) = −3, however this also implies inf

0≤x≤1
f(x) = −3.

4. Let A,B be nonempty subsets of R such that sup A < sup B. Show that there exists an
element b ∈ B which is an upper bound of A.

Since sup A is smaller than the least upper bound of B, we see that sup A cannot be an
upper bound of B. This means that some element b ∈ B is such that b > sup A. Using
the fact that sup A is an upper bound of A, we now get b > sup A ≥ a for all a ∈ A. This
means that b itself is an upper bound of A.

5. Given any real number x 6= 1, show that

1 + x + . . . + xn =
1− xn+1

1− x
for all n ∈ N.

• We use induction to establish the given identity for all n ∈ N.

• When n = 1, we can use division of polynomials to find that

1− xn+1

1− x
=

1− x2

1− x
= 1 + x = 1 + x1

because x 6= 1 by assumption. This proves the given identity for the case n = 1.

• Suppose the identity holds for some n, in which case

1 + x + . . . + xn =
1− xn+1

1− x
.

Adding xn+1 to both sides, we then get

1 + x + . . . + xn+1 =
1− xn+1

1− x
+ xn+1 =

1− xn+1 + xn+1 − xn+2

1− x
.

Simplifying the rightmost expression, we finally arrive at

1 + x + . . . + xn+1 =
1− xn+2

1− x
=

1− xn+1+1

1− x
.

Since this proves the given identity for n + 1, the identity holds for all n ∈ N, indeed.


