MA121 Easter exam
Solutions

. Compute each of the following integrals:

—1
/Bf dx, /xlogm dz.
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To compute the first integral, we factor the denominator and we write

3r—1 3r—1 A B C
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for some constants A, B, C' that need to be determined. Clearing denominators gives
3r—1=A(x+1)(z—1)+ Bx(zr — 1)+ Czx(z + 1)
and we can now look at some suitable choices of = to find
r=0, z=-1, x=1 = —1=-A, —-4=2B, 2=2C.
This means that A = C =1 and B = —2. In particular, equation (x) reduces to
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and we may integrate this equation term by term to conclude that

3r —1
/ f dr =log |z| — 2log |z + 1| + log | — 1| + C.
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To compute the second integral, we integrate by parts to find that
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. Suppose f, g are integrable on [a,b] with f(x) < g(x) for all x € |a,b]. Show that

[ rwars [ a

Let P = {xg,z1,...,2,} be a partition of [a,b]. Starting with the inequality

f(z) < g(x) forall x € [xg, xpy1],



we take the infimum of both sides to get

inf f(z)< inf g(x).

[Th,Trq1] [Th,Th11]

Multiplying by the positive quantity xx.1 — =, and then adding, we conclude that

n—1 n—1
doooinf f@) (mep—a) <D inf o g(e) - (e — z).
0 [Tk, kt1] 0 [Tk, Trt1]

Since the last inequality holds for all partitions P by above, we must thus have
S™(f.P) <S5 (g, P)

for all partitions P. Taking the supremum of both sides, we finally deduce that
b b
[ 1) e = sup(s~(£.P)) < sup{5~(6.P)) = [ o)

. Define a sequence {a,} by setting a; = 1 and

Gpy1 = V3a, —1 for eachn > 1.

Show that 1 < a, < a,y1 < 3 for each n > 1, use this fact to conclude that the sequence
converges and then find its limit.

Since the first two terms are a; = 1 and ay = v/2, the statement
1 S Qnp, S Qp41 S 3
does hold when n = 1. Suppose that it holds for some n, in which case

3-1<3a,-1<3a,11—1<9-1 = V2< a1 < a2 < V8
— 1 S Qp+1 S Ap42 S 3.
In particular, the statement holds for n+ 1 as well, so it actually holds for all n € N. This

shows that the given sequence is monotonic and bounded, hence also convergent; denote
its limit by L. Using the definition of the sequence, we then find that

ny1 =V3a, —1 = L=+3L-1 =— L[*-3L+1=0.
Solving this quadratic equation now gives
C3EV3 -4 3445
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Since 1 < a,, < 3 for each n € N, however, we must also have 1 < L < 3, hence

L:3+2\/3.

L




4. Compute each of the following limits:

. a =5+ Tr—3 , ,
};Ln} IR — lim zsin(1/z).
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e Since the first limit is a 0/0 limit, we may apply L’Hopital’s rule to find that

oo =522+ T7r—3 32 —10x 4+ 7
L = lim =lim —————
e—1 3 — 422 +5x —2  2—1 322 -8z +5

Since this is still a 0/0 limit, L'Hopital’s rule is still applicable and we get

. 3x2—10z+7 . 6xr—10 —4
L=1lm ———— =lim =— =2
e—1 322 —8x+5 a—1 6r—8 =2

e When it comes to the second limit, we can express it in the form
sin(1/x
M = lim zsin(1/z) = lim M

This is now a 0/0 limit, so L'Hopital’s rule becomes applicable and we get

= lim cos(1/z) - (/) = lim cos(1/x) = cos0 =
M —leOO (1/z) | (1/z) 0=1.
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5. Test each of the following series for convergence:

(_1)n—1 el/n
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e To test the first series for convergence, we use the alternating series test with

Note that a, is certainly non-negative for each n > 1, and that we also have

. _oetm et
lim a, = lim — = lim — = lim — =0
n—oo n—oo N

n—oo M, n—oo N,

Moreover, a, is decreasing for each n > 1 because

1/n\ ' Un . (_0=2) .0 _ ol/n 1/n
(e ) el/" . (—n 2) n—e e (1) <0
n n

for each n > 1. Thus, the given series converges by the alternating series test.




To test the second series for convergence, we use the limit comparison test with

1 1
:log(l—l——), b, = —.
n n

Note that the limit comparison test is, in fact, applicable here because

1 \"
lim 2 — lim nlog (1+—) = lim log (1+—) =loge = 1.
b n n
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Since the series Y | b, is a divergent p-series, the series Y~ | a, must also diverge.
. Find the radius of convergence of the power series

— (n)?
- Z (2n)!

n=0

To find the radius of convergence, one always uses the ratio test. In our case,

a1 (n+D! (n4+D! 2n) 2™ (n41)2 -z

an n! nl (2n+ 2l an (2n+1)(2n +2)

and this implies that
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anp,
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Thus, the power series converges when |z|/4 < 1 and diverges when |z|/4 > 1. In other
words, it converges when |z| < 4 and diverges when |z| > 4. This also means that R = 4.

. Suppose f is a differentiable function such that f'(x) = f(z) + € for all x € R. Show
that there exists some constant C' such that f(x) = xe® + Ce® for all x € R.

Letting g(z) = f(z)e™® — x for convenience, one easily finds that

g (z) = flx)e™ = flx)e™
=e " [f'(x) = f(@)] -
g 0.

=e " —1=

In particular, g(x) is actually constant, say g(x) = C' for all x € R, and this implies
g(z)=C = flx)e"=2+C = f(x)=uwxe"+Ce".

. Use the formula for a geometric series to show that

o0

(1
Z —+x§ whenever |z| < 1.
= z)



Since |z| < 1 by assumption, the formula for a geometric series is applicable and so

o
ga:”:

n=0

=(1-a)"
We differentiate both sides of this equation and we multiply by x to get

Zm: =(1-2)? = an":x(l—x)_zzﬁ.

Using the quotient rule to differentiate once again, we arrive at

o1 (1= +2(1—z)-x  (1-2)(1—a+22)
Z” (1— )t - 1—zt

Multiplying by x and simplifying, we may finally conclude that

Cz(l-z)(1—-2+2z) x(l1+4+2)
Z” (1—a) TP




