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1. Make a table listing the min, inf, max and sup of each of the following sets; write DNE for

all quantities which fail to exist. You need not justify any of your answers.

(a) A = {n ∈ N : n− 1 ∈ N}

(b) B = {x ∈ R : 2x ≤ 5}

(c) C = {x ∈ R : |x| < y for all y > 0}

(d) D = {x ∈ R : |x + 1| < 1}

2. Let f be the function defined by

f(x) =





4x3−7x−3
2x−3

if x 6= 3/2

10 if x = 3/2



 .

Show that f is continuous at y = 3/2. As a hint, one may avoid the ε-δ definition here.

3. Show that there exists some 0 < x < 1 such that (x2 − 2x + 3)3 = (2x2 − x + 1)4.

4. Find the maximum value of f(x) = x(7− x2)3 over the closed interval [−1, 3].

5. Suppose that f is a differentiable function such that

f ′(x) =
1

1 + x2
for all x ∈ R.

Show that f(x) + f(1/x) = 2f(1) for all x > 0.

6. Let f be the function defined by

f(x) =





2− 3x if x ≤ 2

4− 5x if x > 2



 .

Show that f is discontinuous at y = 2.

7. Let A be a nonempty subset of R that has an upper bound and let ε > 0 be given. Show

that there exists some element a ∈ A such that sup A− ε < a ≤ sup A.

8. Show that the polynomial f(x) = x4 − 2x3 + x2 − 1 has exactly one root in (1, 2).
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