
MA121, Sample Exam #3
Solutions

1. Let A,B be nonempty subsets of R such that inf A < inf B. Show that there exists an
element a ∈ A which is a lower bound of B.

• Since inf B is bigger than the greatest lower bound of A, we see that inf B cannot be a
lower bound of A. This means that some element a ∈ A is such that a < inf B. Using
the fact that inf B is a lower bound of B, we conclude that a < inf B ≤ b for all b ∈ B.
This also means that a itself is a lower bound of B.

2. Let f be the function defined by

f(x) =

{
3x + 1 if x ∈ Q
6− 2x if x /∈ Q

}
.

Show that f is continuous at y = 1.

• To prove that f is continuous at y = 1, let us first note that

|f(x)− f(1)| = |f(x)− 4| =
{

3|x− 1| if x ∈ Q
2|1− x| if x /∈ Q

}
.

Now, let ε > 0 be given and set δ = ε/3. Then δ > 0 and we have

|x− 1| < δ =⇒ |f(x)− f(1)| ≤ 3|x− 1| < 3δ = ε.

3. Show that 2e · x2 log x ≥ −1 for all x > 0. Here, e is the usual constant e ≈ 2.718.

• Letting f(x) = x2 log x for convenience, one easily finds that

f ′(x) = 2x log x + x2 · x−1 = 2x log x + x = x(2 log x + 1).

Since x > 0 by assumption, the given function is then increasing if and only if

2 log x + 1 > 0 ⇐⇒ log x > −1/2 ⇐⇒ x > e−1/2.

This means f is decreasing when 0 < x < e−1/2 and increasing when x > e−1/2, so

f(x) ≥ f(e−1/2) = e−1 log e−1/2 = − 1

2e
=⇒ 2e · f(x) ≥ −1.

4. Compute each of the following integrals:

∫
4x2 − 5x + 2

x3 − x2
dx,

∫
sin3 x dx.
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• To compute the first integral, we factor the denominator and we write

4x2 − 5x + 2

x3 − x2
=

4x2 − 5x + 2

x2(x− 1)
=

Ax + B

x2
+

C

x− 1

for some constants A, B, C that need to be determined. Clearing denominators gives

4x2 − 5x + 2 = (Ax + B)(x− 1) + Cx2

and we can now look at some suitable choices of x to find that

x = 0, 1, 2 =⇒ 2 = −B, 1 = C, 8 = 2A + B + 4C.

Since the last equation gives 2A = 8−B − 4C = 6, we get

4x2 − 5x + 2

x3 − x2
=

A

x
+

B

x2
+

C

x− 1
=

3

x
− 2

x2
+

1

x− 1
.

Once we now integrate this equation term by term, we may finally conclude that

∫
4x2 − 5x + 2

x3 − x2
dx = 3 log |x|+ 2x−1 + log |x− 1|+ C.

• To compute the second integral, it is convenient to write it in the form
∫

sin3 x dx =

∫
(1− cos2 x) sin x dx =

∫
sin x dx−

∫
cos2 x sin x dx.

Using the substitution u = cos x, we then get du = − sin x dx, hence also

∫
sin3 x dx = − cos x +

∫
u2 du = − cos x +

u3

3
+ C = − cos x +

cos3 x

3
+ C.

5. Using the mean value theorem, or otherwise, show that

(b− a)ea < eb − ea < (b− a)eb whenever a < b.

• Since f(x) = ex is differentiable on [a, b], the mean value theorem applies to give

f ′(c) =
f(b)− f(a)

b− a
=⇒ ec =

eb − ea

b− a

for some c ∈ (a, b). We now use the fact that f is strictly increasing to find that

a < c < b =⇒ ea < ec < eb =⇒ ea <
eb − ea

b− a
< eb.

Multiplying by the positive quantity b− a, we thus obtain the desired inequality.
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6. Test each of the following series for convergence:
∞∑

n=1

2n + 4n

3n + 5n
,

∞∑
n=1

sin(1/n2).

• To test the first series for convergence, we use the comparison test. Since
∞∑

n=1

2n + 4n

3n + 5n
≤

∞∑
n=1

2n + 4n

5n
=

∞∑
n=1

(
2

5

)n

+
∞∑

n=1

(
4

5

)n

,

the first series is smaller than the sum of two convergent series, so it converges.

• For the second series, we use the limit comparison test with

an = sin(1/n2) = sin n−2, bn = 1/n2 = n−2.

To show that the limit comparison test is applicable here, we need to show that

lim
n→∞

an

bn

= lim
n→∞

sin n−2

n−2

is equal to 1. Noting that this is a 0/0 limit, we may use L’Hôpital’s rule to get

lim
n→∞

an

bn

= lim
n→∞

cos n−2 · (n−2)′

(n−2)′
= lim

n→∞
cos n−2 = cos 0 = 1.

Since
∑∞

n=1 bn is a convergent p-series, the series
∑∞

n=1 an must then converge as well.

7. Suppose f, g are integrable on [a, b] with f(x) ≤ g(x) for all x ∈ [a, b]. Show that
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

• Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Starting with the inequality

f(x) ≤ g(x) for all x ∈ [xk, xk+1],

we take the infimum of both sides to get

inf
[xk,xk+1]

f(x) ≤ inf
[xk,xk+1]

g(x).

Multiplying by the positive quantity xk+1 − xk and then adding, we conclude that

n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk) ≤
n−1∑

k=0

inf
[xk,xk+1]

g(x) · (xk+1 − xk).

Since the last inequality holds for all partitions P by above, we must thus have

S−(f, P ) ≤ S−(g, P )

for all partitions P . Taking the supremum of both sides, we finally deduce that
∫ b

a

f(x) dx = sup
P
{S−(f, P )} ≤ sup

P
{S−(g, P )} =

∫ b

a

g(x) dx.
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8. Letting f(x, y) = log(x2 + y2), find the rate at which f is changing at the point (2, 3) in
the direction of the vector v = 〈3, 4〉.

• To find a unit vector u in the direction of v, we need to divide v by its length, namely

||v|| =
√

32 + 42 = 5 =⇒ u =
1

5
v = 〈3/5, 4/5〉 .

The desired rate of change is given by the directional derivative Duf = ∇f · u. Since

∇f(x, y) = 〈fx, fy〉 =

〈
2x

x2 + y2
,

2y

x2 + y2

〉
=⇒ ∇f(2, 3) = 〈4/13, 6/13〉 ,

we may thus conclude that the desired rate of change is

Duf = ∇f · u =
4

13
· 3

5
+

6

13
· 4

5
=

36

65
.

9. Classify the critical points of the function defined by f(x, y) = x2 + 2y2 − x2y.

• To find the critical points, we need to solve the equations

0 = fx(x, y) = 2x− 2xy = 2x(1− y),

0 = fy(x, y) = 4y − x2.

If x = 0, then y = 0 by the second equation. Otherwise, y = 1 by the first equation, so

x2 = 4y = 4 =⇒ x = ±2

by the second equation. In particular, the only critical points are (0, 0) and (±2, 1).

• To classify the critical points, we compute the Hessian matrix

H =

[
fxx fxy

fyx fyy

]
=

[
2− 2y −2x
−2x 4

]
.

When it comes to the critical points (±2, 1), this gives

H =

[
0 ∓4
∓4 4

]
=⇒ det H = −16 < 0

so each of those is a saddle point. When it comes to the critical point (0, 0), we have

H =

[
2 0
0 4

]
=⇒ det H = 8 > 0

so the fact that fxx = 2 > 0 makes the origin a local minimum.
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10. Compute the double integrals

∫ π

0

∫ π

x

sin y

y
dy dx,

∫ 1

0

∫ 1

y

x2exy dx dy,

∫ 2

0

∫ 4

x2

xey2

dy dx.

• To compute the first integral, we switch the order of integration to get

∫ π

0

∫ π

x

sin y

y
dy dx =

∫ π

0

∫ y

0

sin y

y
dx dy =

∫ π

0

sin y dy

=
[
− cos y

]π

0
= − cos π + cos 0 = 2.

• When it comes to the second integral, switching the order of integration gives

∫ 1

0

∫ 1

y

x2exy dx dy =

∫ 1

0

∫ x

0

x2exy dy dx.

We temporarily focus on the inner integral, which is given by

∫ x

0

x2exy dy = x2

∫ x

0

exy dy = x2

[
exy

x

]y=x

y=0

= x(ex2 − 1).

Once we now combine the last two equations, we arrive at

∫ 1

0

∫ 1

y

x2exy dx dy =

∫ 1

0

(xex2 − x) dx =

[
ex2

2
− x2

2

]1

0

=
e− 2

2
.

• To compute the last integral, we switch the order of integration to get

∫ 2

0

∫ 4

x2

xey2

dy dx =

∫ 4

0

∫ √
y

0

xey2

dx dy.

We temporarily focus on the inner integral, which is given by

∫ √
y

0

xey2

dx =

[
x2ey2

2

]x=
√

y

x=0

=
yey2

2
.

Once we now combine the last two equations, we arrive at

∫ 2

0

∫ 4

x2

xey2

dy dx =

∫ 4

0

yey2

2
dy =

[
ey2

4

]4

0

=
e16 − 1

4
.
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