MA121, Sample Exam #2
Solutions

. Compute each of the following integrals:

3
/ §+5 dx, /mcos:cd:c.
T3 —x

To compute the first integral, we factor the denominator and we write

3r+5 3r+95 A B C

-z ax+1)(z—1) ;+x+1+x—1

(*)

for some constants A, B, C' that need to be determined. Clearing denominators gives
3t+5=A(x+1)(x — 1)+ Bzx(x — 1)+ Cx(xr + 1)
and we can now look at some suitable choices of x to find
r=0, z=-1, z=1 = b=-A 2=2B, 8=2C.
This means that A = —5, B =1 and C' = 4. In particular, equation () reduces to
3r+5 5 1 4

3 —x r z+1 z-1

and we may integrate this equation term by term to conclude that

3 )
/ §+ dx = —5log |z| 4 log |z + 1| + 4log |z — 1| + C.
-

To compute the second integral, we integrate by parts to find that

/a:cosxdx:/x(sinx)'dx::vsinm—/sinxdm:xsinx—i—cosm—I—C'.

. Let f be defined by f(x) = { L ifes0 } Show that f is integrable on [0, 1].

0 ifx=0
Given a partition P = {xg,x1,...,z,} of [0,1], we must clearly have
inf f(x)=0, inf f(x)=1 foreachl <k<mn-1
[z0,21] [k k1]

because [xg, z1] is the only subinterval which contains the point x = 0. This gives

n—1
S(fP) =), inf f(@): (@ —a)
k=0 ksThk+1

= 0(.T1 —l’o) + (ZEQ —$1)+(I3 —ZEQ) + ...+(l‘n—xn_1)

=z, —xr1=1—121.



Taking the supremum over all possible partitions, we then find that

sgp {S7(f,P)} = sup (1 —m) =1

0<z1<1

To similarly compute the Darboux upper sums of f, let us start by noting that

sup f(zr)=1 foreach0<k<n-—1

[Th,Th11]

because every subinterval [z, xxy1] contains a nonzero number. This gives

MH

(f, P) sup  f(x) - (Tpy1 — 7)
k=0 [xk $k+1]
=(x1—wo)+ (xa — 1)+ ...+ (xp — Tp_1)
=x,—290=1—-0=1.

Taking the infimum over all possible partitions, we may then finally conclude that

inf{S7(f, P)} =inf{1} =1 = sup {S7(f, P)}.

. Define a sequence {a,} by setting a; = 4 and

(pi1 = for each n > 1.

5 — ay

Show that 0 < apq < a, <4 for each n > 1, use this fact to conclude that the sequence
converges and then find its limat.

Since the first two terms are a; = 4 and ay = 1/(5 — a;) = 1, the statement
0<apy1 <a, <4
does hold when n = 1. Suppose that it holds for some n, in which case

0> —apy1 > —an > —4 = 5>5—au25—a,>1
- 1/5§an+2§an+1§1
= Ogan—i—Q San+1 §4

Thus, the statement holds for n 4+ 1 as well, so it must actually hold for all n € N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote
its limit by L. Using the definition of the sequence, we then find that

1 1
L=—— L* —~5L+1=0.
5 a = P T = 5L + 0

An4+1 =



Solving this quadratic equation now gives

5+425—4  5+421
a 2 n 2

Since 0 < a,, < 4 for each n € N, however, we must also have 0 < L <4, so

~5—4/21

L

L
2
. Compute each of the following limits:
et —x—1 : :
glglil(l) — :Ch_)rgoxsm(l/x).

Since the first limit is a 0/0 limit, we may apply L’Hopital’s rule to find that

et —x—1 et =1
L=lim —— =lim
z—0 2 z—0 21

Since this is still a 0/0 limit, L’Hopital’s rule is still applicable and we get

r T 0
L—tim &t g © =S 2 L
x—0 2x z—0 2 2 2

When it comes to the second limit, we can express it in the form

in(1
M = lim zsin(1/z) = lim M

This is now a 0/0 limit, so L’Hopital’s rule becomes applicable and we get

= lim cos(1/z) - (/) = lim cos(1/x) = cos0 =

. Test each of the following series for convergence:

(=1t n? > on \"
Z 14+n* 7 ;<1+3n)'

n=1

To test the first series for convergence, we use the alternating series test with
2

n
(n = 7 gl
Note that a,, is certainly non-negative for each n > 1, and that we also have
n? _ 1/n? 0

0.

1‘ ’I’Lzl. :1 = —
o e I e L B (I

Moreover, a, is decreasing for each n > 1 because
n2 \'  2n(l+n')—4n®-n?  2n(l —n')
1+n4)

A+n? (Qtmie =

whenever n > 1. Thus, the given series converges by the alternating series test.

3



To test the second series for convergence, we use the comparison test. Since

(&%) <) -(6)

the given series is smaller than a convergent geometric series, so it converges itself.

. Find the radius of convergence of the power series

=3

2n)!

~—~

n=0
To find the radius of convergence, one always uses the ratio test. In our case,

a1 (n+D (n4+D1 2n)! 2™ (n41)2 -z

an, n! n! (2n+2)!  an (2n+1)(2n + 2)

and this implies that

ny1| lim (n?+2n+1) || _ m

L=1 )
m n—oo  4n? + 6n + 2 4

n—oo

Qn

Thus, the power series converges when |z|/4 < 1 and diverges when |z|/4 > 1. In other
words, it converges when |z| < 4 and diverges when |z| > 4. This also means that R = 4.

. Suppose f is a differentiable function such that f'(x) = 2x- f(x) for all x € R. Show that
there exists some constant C' such that f(x) = Ce” for all x € R.

Letting g(z) = f(x)- e~ for convenience, one easily finds that
g'(w)=f(@)-e™ + fx)- e - (—2z)
= - [f/(2) — 22 f(2)] = 0.
In particular, g(z) is actually constant, say g(z) = C for all z € R, and this implies
gx)=C = f(x)-e®=C = fla)=Ce".
. Suppose that f is a function with

If(z) = f(y)| < |z —y|* forall z,y € R.

Using the limit definition of the derivative, show that f is actually constant.

We need only show that f/'(y) = 0 for all y € R. Using the given inequality, we get

)< @ = 1)
|z =yl
Since |z — y| approaches zero as x — y, the quotient above is thus squeezed between two

functions which approach zero as x — y. Using the Squeeze Law, we conclude that the
quotient itself must approach zero as x — y. This also implies that f'(y) = 0.

< |r —y| whenever z # y.



