
MA121, Sample Exam #2
Solutions

1. Compute each of the following integrals:
∫

3x + 5

x3 − x
dx,

∫
x cos x dx.

• To compute the first integral, we factor the denominator and we write

3x + 5

x3 − x
=

3x + 5

x(x + 1)(x− 1)
=

A

x
+

B

x + 1
+

C

x− 1
(∗)

for some constants A, B, C that need to be determined. Clearing denominators gives

3x + 5 = A(x + 1)(x− 1) + Bx(x− 1) + Cx(x + 1)

and we can now look at some suitable choices of x to find

x = 0, x = −1, x = 1 =⇒ 5 = −A, 2 = 2B, 8 = 2C.

This means that A = −5, B = 1 and C = 4. In particular, equation (∗) reduces to

3x + 5

x3 − x
= −5

x
+

1

x + 1
+

4

x− 1

and we may integrate this equation term by term to conclude that
∫

3x + 5

x3 − x
dx = −5 log |x|+ log |x + 1|+ 4 log |x− 1|+ C.

• To compute the second integral, we integrate by parts to find that
∫

x cos x dx =

∫
x(sin x)′ dx = x sin x−

∫
sin x dx = x sin x + cos x + C.

2. Let f be defined by f(x) =

{
1 if x 6= 0
0 if x = 0

}
. Show that f is integrable on [0, 1].

• Given a partition P = {x0, x1, . . . , xn} of [0, 1], we must clearly have

inf
[x0,x1]

f(x) = 0, inf
[xk,xk+1]

f(x) = 1 for each 1 ≤ k ≤ n− 1

because [x0, x1] is the only subinterval which contains the point x = 0. This gives

S−(f, P ) =
n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk)

= 0(x1 − x0) + (x2 − x1) + (x3 − x2) + . . . + (xn − xn−1)

= xn − x1 = 1− x1.
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Taking the supremum over all possible partitions, we then find that

sup
P
{S−(f, P )} = sup

0<x1<1
(1− x1) = 1.

To similarly compute the Darboux upper sums of f , let us start by noting that

sup
[xk,xk+1]

f(x) = 1 for each 0 ≤ k ≤ n− 1

because every subinterval [xk, xk+1] contains a nonzero number. This gives

S+(f, P ) =
n−1∑

k=0

sup
[xk,xk+1]

f(x) · (xk+1 − xk)

= (x1 − x0) + (x2 − x1) + . . . + (xn − xn−1)

= xn − x0 = 1− 0 = 1.

Taking the infimum over all possible partitions, we may then finally conclude that

inf
P
{S+(f, P )} = inf

P
{1} = 1 = sup

P
{S−(f, P )}.

3. Define a sequence {an} by setting a1 = 4 and

an+1 =
1

5− an

for each n ≥ 1.

Show that 0 ≤ an+1 ≤ an ≤ 4 for each n ≥ 1, use this fact to conclude that the sequence
converges and then find its limit.

• Since the first two terms are a1 = 4 and a2 = 1/(5− a1) = 1, the statement

0 ≤ an+1 ≤ an ≤ 4

does hold when n = 1. Suppose that it holds for some n, in which case

0 ≥ −an+1 ≥ −an ≥ −4 =⇒ 5 ≥ 5− an+1 ≥ 5− an ≥ 1

=⇒ 1/5 ≤ an+2 ≤ an+1 ≤ 1

=⇒ 0 ≤ an+2 ≤ an+1 ≤ 4.

Thus, the statement holds for n + 1 as well, so it must actually hold for all n ∈ N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote
its limit by L. Using the definition of the sequence, we then find that

an+1 =
1

5− an

=⇒ L =
1

5− L
=⇒ L2 − 5L + 1 = 0.
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Solving this quadratic equation now gives

L =
5±√25− 4

2
=

5±√21

2
.

Since 0 ≤ an ≤ 4 for each n ∈ N, however, we must also have 0 ≤ L ≤ 4, so

L =
5−√21

2
.

4. Compute each of the following limits:

lim
x→0

ex − x− 1

x2
, lim

x→∞
x sin(1/x).

• Since the first limit is a 0/0 limit, we may apply L’Hôpital’s rule to find that

L = lim
x→0

ex − x− 1

x2
= lim

x→0

ex − 1

2x
.

Since this is still a 0/0 limit, L’Hôpital’s rule is still applicable and we get

L = lim
x→0

ex − 1

2x
= lim

x→0

ex

2
=

e0

2
=

1

2
.

• When it comes to the second limit, we can express it in the form

M = lim
x→∞

x sin(1/x) = lim
x→∞

sin(1/x)

1/x
.

This is now a 0/0 limit, so L’Hôpital’s rule becomes applicable and we get

M = lim
x→∞

cos(1/x) · (1/x)′

(1/x)′
= lim

x→∞
cos(1/x) = cos 0 = 1.

5. Test each of the following series for convergence:
∞∑

n=1

(−1)n−1 n2

1 + n4
,

∞∑
n=1

(
2n

1 + 3n

)n

.

• To test the first series for convergence, we use the alternating series test with

an =
n2

1 + n4
.

Note that an is certainly non-negative for each n ≥ 1, and that we also have

lim
n→∞

an = lim
n→∞

n2

1 + n4
= lim

n→∞
1/n2

1/n4 + 1
=

0

0 + 1
= 0.

Moreover, an is decreasing for each n ≥ 1 because
(

n2

1 + n4

)′
=

2n(1 + n4)− 4n3 · n2

(1 + n4)2
=

2n(1− n4)

(1 + n4)2
≤ 0

whenever n ≥ 1. Thus, the given series converges by the alternating series test.
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• To test the second series for convergence, we use the comparison test. Since
(

2n

1 + 3n

)n

≤
(

2n

3n

)n

=

(
2

3

)n

,

the given series is smaller than a convergent geometric series, so it converges itself.

6. Find the radius of convergence of the power series

f(x) =
∞∑

n=0

(n!)2

(2n)!
· xn.

• To find the radius of convergence, one always uses the ratio test. In our case,

an+1

an

=
(n + 1)!

n!
· (n + 1)!

n!
· (2n)!

(2n + 2)!
· xn+1

xn
=

(n + 1)2 · x
(2n + 1)(2n + 2)

and this implies that

L = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

(n2 + 2n + 1) |x|
4n2 + 6n + 2

=
|x|
4

.

Thus, the power series converges when |x|/4 < 1 and diverges when |x|/4 > 1. In other
words, it converges when |x| < 4 and diverges when |x| > 4. This also means that R = 4.

7. Suppose f is a differentiable function such that f ′(x) = 2x · f(x) for all x ∈ R. Show that
there exists some constant C such that f(x) = Cex2

for all x ∈ R.

• Letting g(x) = f(x) · e−x2
for convenience, one easily finds that

g′(x) = f ′(x) · e−x2

+ f(x) · e−x2 · (−2x)

= e−x2 · [f ′(x)− 2x · f(x)] = 0.

In particular, g(x) is actually constant, say g(x) = C for all x ∈ R, and this implies

g(x) = C =⇒ f(x) · e−x2

= C =⇒ f(x) = Cex2

.

8. Suppose that f is a function with

|f(x)− f(y)| ≤ |x− y|2 for all x, y ∈ R.

Using the limit definition of the derivative, show that f is actually constant.

• We need only show that f ′(y) = 0 for all y ∈ R. Using the given inequality, we get

0 ≤ |f(x)− f(y)|
|x− y| ≤ |x− y| whenever x 6= y.

Since |x− y| approaches zero as x → y, the quotient above is thus squeezed between two
functions which approach zero as x → y. Using the Squeeze Law, we conclude that the
quotient itself must approach zero as x → y. This also implies that f ′(y) = 0.
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