
MA121, Sample Exam #1
Solutions

1. Make a table listing the min, inf, max and sup of each of the following sets; write DNE
for all quantities which fail to exist. You need not justify any of your answers.

(a) A = {n ∈ N : n− 1 ∈ N}
(b) B = {x ∈ R : 2x ≤ 5}

(c) C = {x ∈ R : |x| < y for all y > 0}
(d) D = {x ∈ R : |x + 1| < 1}

• A complete list of answers is provided by the following table.

min inf max sup
A 2 2 DNE DNE
B DNE DNE 5/2 5/2
C 0 0 0 0
D DNE −2 DNE 0

• The set A contains all n ∈ N with n− 1 ≥ 1; this means that A = {2, 3, 4, . . .}.
• The set B contains all real numbers x with x ≤ 5/2; this means that B = (−∞, 5/2].

• The set C contains all real numbers x with −y < x < y for all y > 0. In particular, x
must be bigger than all negative reals and smaller than all positive reals, so C = {0}.
• The set D contains all real numbers x whose distance from −1 is strictly less than 1.
Based on this fact, it is easy to see that D = (−2, 0).

2. Let f be the function defined by

f(x) =

{
4x3−7x−3

2x−3
if x 6= 3/2

10 if x = 3/2

}
.

Show that f is continuous at y = 3/2. As a hint, one may avoid the ε-δ definition here.

To check continuity at y = 3/2, we have to check that

lim
x→3/2

f(x) = f(3/2).

Using division of polynomials to evaluate the limit, one now finds that

lim
x→3/2

f(x) = lim
x→3/2

4x3 − 7x− 3

2x− 3
= lim

x→3/2
(2x2 + 3x + 1).

Since limits of polynomials can be computed by simple substitution, this also implies

lim
x→3/2

f(x) = lim
x→3/2

(2x2 + 3x + 1) = 2 · 9

4
+ 3 · 3

2
+ 1 = 10 = f(3/2).
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3. Show that there exists some 0 < x < 1 such that (x2 − 2x + 3)3 = (2x2 − x + 1)4.

Let f(x) = (x2− 2x + 3)3− (2x2− x + 1)4 for all x ∈ [0, 1]. Being a polynomial, f is then
continuous on the closed interval [0, 1]. Once we now note that

f(0) = 33 − 14 = 26 > 0, f(1) = 23 − 24 = −8 < 0,

we may use Bolzano’s theorem to conclude that f(x) = 0 for some x ∈ (0, 1). This also
implies that (x2 − 2x + 3)3 = (2x2 − x + 1)4 for some 0 < x < 1, as needed.

4. Find the maximum value of f(x) = x(7− x2)3 over the closed interval [−1, 3].

Since we are dealing with a closed interval, it suffices to check the endpoints, the points
at which f ′ does not exist and the points at which f ′ is equal to zero. In our case,

f ′(x) = 1 · (7− x2)3 + x · 3(7− x2)2 · (7− x2)′

by the product and the chain rule. We simplify this expression and factor to get

f ′(x) = (7− x2)3 + 3x(7− x2)2 · (−2x) = (7− x2)2 · (7− x2 − 6x2)

= (7− x2)2 · 7(1− x2).

Keeping this in mind, the only points at which the maximum value may occur are

x = 3, x = ±1, x = ±
√

7.

We exclude the point x = −√7, as this fails to lie in [−1, 3], and we now compute

f(3) = −24, f(±1) = ±216, f(
√

7 ) = 0.

Based on these facts, we may finally conclude that the maximum value is f(1) = 216.

5. Suppose that f is a differentiable function such that

f ′(x) =
1

1 + x2
for all x ∈ R.

Show that f(x) + f(1/x) = 2f(1) for all x > 0.

Let us set g(x) = f(x) + f(1/x) for convenience. Using the chain rule, we then get

g′(x) = f ′(x) + f ′(1/x) · (1/x)′

=
1

1 + x2
+

1

1 + 1/x2
·
(
− 1

x2

)

=
1

1 + x2
− 1

x2 + 1
= 0.

This shows that g(x) is constant, and it also implies that g(x) = g(1) = 2f(1).
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6. Let f be the function defined by

f(x) =

{
2− 3x if x ≤ 2
4− 5x if x > 2

}
.

Show that f is discontinuous at y = 2.

We will show that the ε-δ definition of continuity fails when ε = 2. Suppose it does not
fail. Since f(2) = −4, there must then exist some δ > 0 such that

|x− 2| < δ =⇒ |f(x) + 4| < 2. (∗)

Let us now examine the last equation for the choice x = 2 + δ
2
. On one hand, we have

|x− 2| = δ

2
< δ,

so the assumption in equation (∗) holds. On the other hand, we also have

|f(x) + 4| = |4− 5x + 4| = 5x− 8 = 2 +
5δ

2
> 2

because x = 2 + δ
2

> 2 here. This actually violates the conclusion in equation (∗).
7. Let A be a nonempty subset of R that has an upper bound and let ε > 0 be given. Show

that there exists some element a ∈ A such that sup A− ε < a ≤ sup A.

Note that sup A− ε cannot be an upper bound of A because it is smaller than the least
upper bound of A. This means that some a ∈ A is such that a > sup A− ε. On the other
hand, we must also have a ≤ sup A because a ∈ A and sup A is an upper bound of A.

8. Show that the polynomial f(x) = x4 − 2x3 + x2 − 1 has exactly one root in (1, 2).

Being a polynomial, f is continuous on the closed interval [1, 2] and we also have

f(1) = −1 < 0, f(2) = 3 > 0.

Thus, f has a root in (1, 2) by Bolzano’s theorem. Suppose it has two roots in (1, 2). In
view of Rolle’s theorem, f ′ must then have a root in (1, 2) as well. On the other hand,

f ′(x) = 4x3 − 6x2 + 2x = 2x(2x2 − 3x + 1)

and the roots of this function are x = 0 as well as

x =
3±√9− 4 · 2

2 · 2 =
3± 1

4
=⇒ x = 1, x = 1/2.

Since none of those lies in (1, 2), we conclude that f cannot have two roots in (1, 2).
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