MA121, Homework #7
Solutions

1. Compute each of the following sums in terms of known functions:
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e Relating the first sum to the Taylor series for the exponential function, we get
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e The second sum is related to the Taylor series for the sine function, namely
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e Finally, the third sum is related to the Taylor series for the cosine function since
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2. Show that the equation r = 3sinf describes a circle in polar coordinates. As a hint, you
may wish to multiply this equation by r and then express it in terms of x and y.

e Following the hint, we multiply by r and switch to rectangular coordinates; this gives
r=3sind = r?=3rsinf = 2*+y>=23y.
We now move all terms to the left hand side and we complete the square to get
4yt —-3y=0 = 2+ (y—3/2)*=(3/2)%

This equation describes the points (z,y) whose distance from (0, 3/2) is equal to 3/2. In
particular, it describes the circle of radius 3/2 around (0, 3/2).

3. Compute the area of a right triangle whose sides have length a, b and v/a? + b?.

e Suppose that the triangle has the points (0,0), (a,0) and (a,b) as its vertices. Then we
can view it as the region that lies between the graph of f(x) = bx/a and the z-axis, so
its area is given by the formula
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. Let R be the region between the graph of f(z) = e* — 1 and the x-axis on [0,1]. Find the
volume of the solid obtained upon rotation of R around the x-axis.

The desired volume is given by the formula
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. Compute each of the following limits:
. xy . z2y ) 322 — xy — 2y°
lim 5 92 lim R lim .
(x,y)—>(1,2) T + y (:c7y)—>(0,0) €T + y (Z‘,y)—>(171) xr — y

Since rational functions are known to be continuous, it is clear that
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To compute the second limit, we switch to polar coordinates and we write
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= rcos’ f sin 6.
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Since (x,y) approaches the origin, we have r = /22 + 2 — 0 and so the given function
must approach zero as well. More precisely, we have

0 < |f(x,y)| =|rcos*dsind| <r
and the fact that » — 0 implies that f(x,y) — 0 because of the Squeeze Law.
Using division of polynomials to compute the last limit, one finds that
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because the linear function g(z,y) = 3z + 2y is known to be continuous.



