MA121, Homework #6
Solutions

1. Test each of the following series for convergence:
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e When it comes to the first series, we use the comparison test. Since n > 1, we have
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Being smaller than a convergent p-series, the given series must thus be convergent itself

e To test the second series for convergence, we use the limit comparison test with

Note that the limit comparison test is, in fact, applicable here because
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Since the series >~ | b, is a divergent p-series, the series )~ | a,, must also diverge.

e To test the last series for convergence, we use the alternating series test with

Note that a, is certainly non-negative for each n > 1, and that we also have
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Moreover, a, is decreasing for each n > 1 because the derivative
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is negative for each n > 1. Thus, the given series converges by the alternating series test.



. Find the radius of convergence for each of the following power series:
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One always determines the radius of convergence using the ratio test. In this case,

. n+1 |zt 3n ||
= lim . . = —
n—oo 1N |x|m 3ntl 3

An+1
Qn

L = lim

n—oo

so the series converges when |z|/3 < 1 and diverges when |z|/3 > 1. In other words, the
series converges when |z| < 3 and diverges when |z| > 3. This also means that R = 3.

To find the radius of convergence for the second power series, we similarly compute
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Since the series converges when |z| < 1 and diverges when |z| > 1, this yields R = 1.
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. Differentiate the formula for a geometric series to show that

an = x)2 whenever |x| < 1.

Since |z| < 1 by assumption, the formula for a geometric series is applicable, so we have
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Differentiating both sides of this equation and multiplying by x, we now find that
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. Use the nth term test to show that each of the following series diverges:
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In each case, we have to show that the nth term fails to approach zero as n — oo. When
it comes to the first series, this means that we have to compute the limit
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Since the rightmost limit is an co/oo limit, we may use L'Hopital’s rule to get
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e When it comes to the second series, we have to similarly compute the limit
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Since this is a 0/0 limit, L’Hopital’s rule is still applicable and we find

= lim cos(/n) - (1/n)’ = lim cos(1/n) = cos0 =




