
MA121, Homework #4
Solutions

1. Compute each of the following limits:

L1 = lim
x→∞

log x

x
, L2 = lim

x→1

x3 + x2 − 5x + 3

x3 − x2 − x + 1
.

Since the first limit gives ∞/∞, we may apply L’Hôpital’s rule to get

L1 = lim
x→∞

log x

x
= lim

x→∞
1/x

1
= lim

x→∞
1

x
= 0.

Since the second limit gives 0/0, L’Hôpital’s rule is still applicable and we find

L2 = lim
x→1

x3 + x2 − 5x + 3

x3 − x2 − x + 1
= lim

x→1

3x2 + 2x− 5

3x2 − 2x− 1
.

The last limit still gives 0/0, so we may apply L’Hôpital’s rule once again to get

L2 = lim
x→1

3x2 + 2x− 5

3x2 − 2x− 1
= lim

x→1

6x + 2

6x− 2
=

6 + 2

6− 2
= 2.

2. Compute each of the following limits:

M1 = lim
x→0

3x − 1

x
, M2 = lim

x→0
(ex + x)1/x.

Setting x = 0 in the first limit gives 0/0, so we can apply L’Hôpital’s rule to get

M1 = lim
x→0

3x − 1

x
= lim

x→0

(3x)′

1
= lim

x→0
(3x)′.

To compute the derivative of 3x, we eliminate the exponent using logarithms, namely

f(x) = 3x =⇒ log f(x) = x log 3 =⇒ 1

f(x)
· f ′(x) = log 3

=⇒ f ′(x) = f(x) · log 3 = 3x log 3.

Returning to our computation above, we may now conclude that

M1 = lim
x→0

(3x)′ = lim
x→0

3x log 3 = 30 log 3 = log 3.

To compute the second limit M2, we eliminate the exponent using logarithms, namely

M2 = lim
x→0

(ex + x)1/x =⇒ log M2 = lim
x→0

log(ex + x)1/x = lim
x→0

log(ex + x)

x
.

Since the last limit gives 0/0, we may then apply L’Hôpital’s rule to get

log M2 = lim
x→0

(ex + x)−1 · (ex + 1)

1
= e0 + 1 = 2

using simple substitution. This also implies that M2 = elog M2 = e2.



3. Let f be the function defined by

f(x) =

{
0 if x 6= 0
1 if x = 0

}
.

Show that f is integrable on [0, 1].

Given any partition P = {x0, x1, . . . , xn} of the interval [0, 1], one clearly has

S−(f, P ) =
n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk) = 0

because all the summands are zero. This also implies that sup S−(f, P ) = 0 as well. To
compute the infimum of the upper Darboux sums, we use a similar computation to get

S+(f, P ) =
n−1∑

k=0

sup
[xk,xk+1]

f(x) · (xk+1 − xk) = 1 · (x1 − x0) = x1.

This gives inf S+(f, P ) = inf x1 = 0 = sup S−(f, P ), so f is integrable on [0, 1], indeed.

4. Suppose f, g are both integrable on [a, b] and f(x) ≤ g(x) for all x ∈ [a, b]. Show that

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Let P = {x0, x1, . . . , xn} be a partition of [a, b]. Starting with the inequality

f(x) ≤ g(x) for all x ∈ [xk, xk+1],

we may take the infimum of both sides to get

inf
[xk,xk+1]

f(x) ≤ inf
[xk,xk+1]

g(x).

Multiplying by the positive quantity xk+1 − xk and then adding, we conclude that

n−1∑

k=0

inf
[xk,xk+1]

f(x) · (xk+1 − xk) ≤
n−1∑

k=0

inf
[xk,xk+1]

g(x) · (xk+1 − xk).

Since the last inequality holds for all partitions P by above, we must actually have

S−(f, P ) ≤ S−(g, P )

for all partitions P . Taking the supremum of both sides, we finally deduce that

∫ b

a

f(x) dx = sup
P
{S−(f, P )} ≤ sup

P
{S−(g, P )} =

∫ b

a

g(x) dx.
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