MA121, Homework #2 Solutions

1. Make a table listing the min, inf, max and sup of each of the following sets; write DNE for all quantities which fail to exist. You need not justify any of your answers.

- (a) $A = \left\{ n \in \mathbb{N} : \frac{n}{n+1} > \frac{3}{4} \right\}$
- (b) $B = \{x \in \mathbb{R} : x > 1 \text{ and } 2x \le 5\}$
- (c) $C = \{x \in \mathbb{Z} : x > 1 \text{ and } 2x \le 5\}$
- (d) $D = \{x \in \mathbb{R} : x < y \text{ for all } y > 0\}$ (e) $E = \{x \in \mathbb{R} : 1 \le |x - 2| < 3\}$
- A complete list of answers is provided by the following table.

	min	\inf	max	\sup
A	4	4	DNE	DNE
В	DNE	1	5/2	5/2
C	2	2	2	2
D	DNE	DNE	0	0
E	DNE	-1	DNE	5

- The set A contains all $n \in \mathbb{N}$ with 4n > 3n + 3; this means that $A = \{4, 5, 6, \ldots\}$.
- The set B contains all $x \in \mathbb{R}$ with $1 < x \le 5/2$; this means that B = (1, 5/2].
- The set C contains all integers x with $1 < x \le 5/2$; this means that $C = \{2\}$.
- The set D contains the real numbers x which are smaller than all positive reals; this means that $D = (-\infty, 0]$.

• The set E contains the real numbers x whose distance from 2 is at least 1 but strictly less than 3; a quick sketch should convince you that $E = (-1, 1] \cup [3, 5)$.

- **2.** Let $x \in \mathbb{R}$ be such that x > -1. Show that $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
 - We use induction to prove the given inequality for all $n \in \mathbb{N}$.
 - When n = 1, the given inequality holds because $(1 + x)^1 = 1 + x = 1 + nx$.
 - Suppose that the inequality holds for some n, in which case

$$(1+x)^n \ge 1+nx.$$

Since 1 + x > 0 by assumption, we may then multiply this inequality by 1 + x to get

$$(1+x)^{n+1} \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$$

because $nx^2 \ge 0$. This actually proves the given inequality for n+1, as needed.

3. Let A, B be nonempty subsets of \mathbb{R} such that $\inf A < \inf B$. Show that there exists an element $a \in A$ which is a lower bound of B.

Since $\inf B$ is bigger than the greatest lower bound of A, we see that $\inf B$ cannot be a lower bound of A. This means that some element $a \in A$ is such that $a < \inf B$. Using the fact that $\inf B$ is a lower bound of B, we now find that $a < \inf B \le b$ for all $b \in B$. This means that a itself is a lower bound of B.

4. Evaluate the limit

$$L = \lim_{x \to 1} \frac{6x^3 - 13x^2 + 4x + 3}{x - 1}$$

Using division of polynomials, one easily finds that

$$L = \lim_{x \to 1} \frac{6x^3 - 13x^2 + 4x + 3}{x - 1} = \lim_{x \to 1} (6x^2 - 7x - 3) = 6 - 7 - 3 = -4$$

since $x \neq 1$ and since limits of polynomials can be computed by simple substitution.

5. Let f be a function such that $|f(x) - 3| \le 5|x|$ for all $x \in \mathbb{R}$. Show that $\lim_{x \to 0} f(x) = 3$. Let $\varepsilon > 0$ be given and set $\delta = \varepsilon/5$. Then $\delta > 0$ and we easily find that

$$0 \neq |x - 0| < \delta \implies |f(x) - 3| \le 5|x| < 5\delta = \varepsilon.$$

6. Show that the function f defined by

$$f(x) = \left\{ \begin{array}{ll} 3x - 2 & \text{if } x \le 2\\ 4x - 4 & \text{if } x > 2 \end{array} \right\}$$

is continuous at y = 2.

To prove that f is continuous at y = 2, let us first note that

$$|f(x) - f(2)| = |f(x) - 4| = \left\{ \begin{array}{ll} 3|x - 2| & \text{if } x \le 2\\ 4|x - 2| & \text{if } x > 2 \end{array} \right\}.$$

Now, let $\varepsilon > 0$ be given and set $\delta = \varepsilon/4$. Then $\delta > 0$ and we easily find that

$$|x-2| < \delta \implies |f(x) - f(2)| \le 4|x-2| < 4\delta = \varepsilon.$$