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1. Suppose that A is a nonempty subset of R that has a lower bound and let ε > 0 be

given. Show that there exists an element a ∈ A such that inf A ≤ a < inf A + ε.

2. Show that the polynomial f(x) = x3 − 7x2 − 5x + 1 has exactly one root in [0, 2].

3. Find the maximum value of f(x) = x+1
x2+8

over the closed interval [0, 3].

4. Compute each of the following integrals:

∫
6x + 9

x3 + 3x2
dx,

∫
2x3ex2

dx.

5. Suppose f is continuous on [a, b]. Show that there exists some c ∈ (a, b) such that

∫ b

a

f(t) dt = (b− a) · f(c).

As a hint, apply the mean value theorem to the function F (x) =
∫ x

a
f(t) dt.

6. Test each of the following series for convergence:

∞∑
n=1

n2 + 2

n3 + n
,

∞∑
n=1

n!

nn
.

7. Let f be the function defined by

f(x) =





1 if x ∈ Q
0 if x /∈ Q



 .

Show that f is not integrable on any closed interval [a, b].

8. Suppose that z = z(r, s, t), where r = u− v, s = v−w and t = w−u. Assuming that

all partial derivatives exist, show that zu + zv + zw = 0.

9. Classify the critical points of the function defined by f(x, y) = 3xy − x3 − y3.

10. Compute the double integral ∫ 1

0

∫ 1

y

ex2

dx dy.
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