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1. Make a table listing the min, inf, max and sup of each of the following sets; write DNE for

all quantities which fail to exist. You need not justify any of your answers.

(a) A =
{
n ∈ N : n

2
∈ N}

(b) B = {x ∈ R : 2x > 3}

(c) C = {x ∈ R : x < y for all y > 0}

(d) D = {x ∈ R : 4x2 ≤ 4x− 1}

2. Let f be the function defined by

f(x) =





4x3−7x+3
2x−1

if x 6= 1/2

−2 if x = 1/2



 .

Show that f is continuous at y = 1/2. As a hint, one may avoid the ε-δ definition here.

3. Show that the polynomial f(x) = x4 − 2x3 + x2 − 1 has exactly one root in (1, 2).

4. Find the maximum value of f(x) = (2x− 5)2(5− x)3 over the closed interval [2, 5].

5. Let f be the function defined by

f(x) =





2− 2x if x < 1

4− 5x if x ≥ 1



 .

Show that f is discontinuous at y = 1.

6. Let x ∈ R be a real number such that 2− nx ≥ 0 for all n ∈ N. Show that x ≤ 0.

7. Show that 3x4 + 4x3 ≥ 12x2 − 32 for all x ∈ R.

8. Show that the set A = {n+1
n

: n ∈ N} is such that inf A = 1.
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