
Chapter 5

Sequences and series

5.1 Sequences

Definition 5.1 (Sequence). A sequence is a function which is defined on the set N of natural
numbers. Since such a function is uniquely determined by its values f(1), f(2) and so on, it is
usually denoted by writing an = f(n) for each n ∈ N.

Definition 5.2 (Convergence). A sequence {an} is called convergent, if lim
n→∞

an exists.

Lemma 5.3 (A useful limit). Given any real number x, one has

lim
n→∞

(
1 +

x

n

)n

= ex.

Notation (Factorial). We denote by n! = 1 · 2 · . . . · n the product of the first n positive
integers, and we also use the convention that 0! = 1.

Definition 5.4 (Monotonic). A sequence {an} is called monotonic, if it is either increasing,
in which case an ≤ an+1 for all n ∈ N, or decreasing, in which case an ≥ an+1 for all n ∈ N.

Example 5.5. To check that the sequence an = n
n+1

is increasing, we define the function

f(x) =
x

x + 1
, x ≥ 1

and we check that f is increasing, instead. Using the quotient rule, we easily find that

f ′(x) =
1 · (x + 1)− 1 · x

(x + 1)2
=

1

(x + 1)2
> 0.

Thus, f(x) is increasing for all x ≥ 1, and this forces an to be increasing for all n ≥ 1.

Example 5.6. To check that the sequence an = 2n

n!
is decreasing, we cannot really follow our

previous approach since n! is only defined when n is a non-negative integer. In this case, it is
better to look at the ratio of two consecutive terms, namely at the ratio

an+1

an

=
2n+1

2n
· n!

(n + 1)!
=

2

n + 1
.
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If this ratio is less than 1, then an+1 ≤ an and so the sequence is decreasing. In our case,

an+1

an

≤ 1 ⇐⇒ 2

n + 1
≤ 1 ⇐⇒ 2 ≤ n + 1

and so the sequence is decreasing for each n ≥ 1.

Theorem 5.7 (Convergent implies bounded). Every convergent sequence is bounded.

Theorem 5.8 (Monotonic and bounded). If a sequence is both monotonic and bounded,
then it must necessarily converge.

Example 5.9. Consider the sequence {an} which is defined by setting a1 = 1 and

an+1 =
√

2an for each n ≥ 1.

To show that this sequence converges, we shall first show that

1 ≤ an ≤ an+1 ≤ 2 for each n ≥ 1. (∗)

When n = 1, this statement asserts that 1 ≤ 1 ≤ √
2 ≤ 2, so it is clearly true. Suppose the

statement holds for some n. Multiplying by 2 and taking square roots, we then find that

√
2 ≤ √

2an ≤
√

2an+1 ≤ 2 =⇒
√

2 ≤ an+1 ≤ an+2 ≤ 2

=⇒ 1 ≤ an+1 ≤ an+2 ≤ 2.

In particular, our statement (∗) holds for n + 1 as well, so it actually holds for all n ∈ N. This
shows that the given sequence is monotonic and bounded, hence also convergent; denote its
limit by L. Using the definition of the sequence, we then find that

an+1 =
√

2an =⇒ lim
n→∞

an+1 = lim
n→∞

√
2an =⇒ L =

√
2L.

This gives L2 = 2L, so either L = 0 or else L = 2. On the other hand, we must also have

1 ≤ an ≤ 2 =⇒ 1 ≤ lim
n→∞

an ≤ 2 =⇒ 1 ≤ L ≤ 2

because of the statement (∗) we just proved. Thus, the limit of the sequence is L = 2.

Lemma 5.10. Given any real number x with |x| < 1, one has lim
n→∞

xn = 0.

Lemma 5.11. Every sequence has a monotonic subsequence.

Theorem 5.12 (Bolzano-Weierstrass). Every bounded sequence has a convergent subse-
quence.
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5.2 Infinite series

Definition 5.13 (Partial sums). Given a sequence {an}, we define the sequence {sn} of its
partial sums by setting sn = a1 + a2 + . . . + an for each n ∈ N.

Definition 5.14 (Infinite series). Let {an} be a given sequence and {sn} the sequence of its
partial sums. In the case that {sn} happens to converge, we introduce the series

∞∑
n=1

an = lim
N→∞

N∑
n=1

an = lim
N→∞

sN

and we say that this series converges. Otherwise, we say that the series diverges.

Proposition 5.15 (Properties of series). Let {an}, {bn} be sequences and let c ∈ R.

(a) One has
∞∑

n=1

(an + bn) =
∞∑

n=1

an +
∞∑

n=1

bn as long as the two series on the right converge.

(b) One has
∞∑

n=1

can = c
∞∑

n=1

an as long as the series on the right converges.

Theorem 5.16 (nth term test). If the series
∞∑

n=1

an converges, then it must be the case that

lim
n→∞

an = 0.

In other words, the series diverges whenever its nth term fails to approach zero as n →∞.

Example 5.17. As one can easily see, each of the following series is divergent:
∞∑

n=1

(−1)n,

∞∑
n=1

n,

∞∑
n=1

n + 1

n
,

∞∑
n=1

(
1 +

1

n

)n

.

Theorem 5.18 (Geometric series). Let x ∈ R be fixed. Then the geometric series
∑∞

n=0 xn

converges if and only if |x| < 1, in which case we have
∞∑

n=0

xn =
1

1− x
.

Example 5.19. We use the last formula to explicitly compute the sum

S =
∞∑

n=1

2n+2

32n+1
.

Let us first isolate the part of the exponents which does not depend on n; we get

S =
∞∑

n=1

2n · 4
32n · 3 =

4

3
·
∞∑

n=1

2n

9n
=

4

3
·
∞∑

n=1

(
2

9

)n

.

Since the rightmost sum is a geometric series without its first term, this actually gives

S =
4

3
·
[ ∞∑

n=0

(
2

9

)n

− 1

]
=

4

3
·
[

1

1− 2/9
− 1

]
=

4

3
·
[
9

7
− 1

]
=

8

21
.
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5.3 Tests for convergence

Lemma 5.20 (Non-negative series). Let {an} be a sequence of non-negative terms. Then
the series

∑∞
n=1 an converges if and only if the sequence of partial sums is bounded.

Lemma 5.21 (Integral Test). Suppose f is non-negative and decreasing on [1,∞). Then the
series

∑∞
n=1 f(n) converges if and only if the integral

∫ n

1

f(x) dx

is bounded for all n ∈ N. We shall only use this test in order to prove the following theorem.

Theorem 5.22 (p-series). The series
∑∞

n=1
1
np converges if and only if p > 1.

Theorem 5.23 (Comparison Test). Suppose that {an} and {bn} are non-negative with

0 ≤ an ≤ bn for all n ∈ N.

If the series
∑∞

n=1 bn happens to converge, then the series
∑∞

n=1 an must also converge. And
if the series

∑∞
n=1 an happens to diverge, then the series

∑∞
n=1 bn must also diverge. In short,

smaller than convergent implies convergent and bigger than divergent implies divergent.

Example 5.24. We use the comparison test to show that the series

∞∑
n=1

1

2n + n

is convergent. Since the denominator is at least as large as 2n, it is clear that

∞∑
n=1

1

2n + n
≤

∞∑
n=1

1

2n
=

∞∑
n=1

(
1

2

)n

.

Being smaller than a convergent geometric series, the given series must thus be convergent by
the comparison test. Needless to say, one could also argue that

∞∑
n=1

1

2n + n
≤

∞∑
n=1

1

n
,

however this inequality does not help because the rightmost series is a divergent p-series.

Theorem 5.25 (Limit Comparison Test). Suppose {an} and {bn} are non-negative with

lim
n→∞

an

bn

= 1.

Then the series
∑∞

n=1 an converges if and only if the series
∑∞

n=1 bn converges.
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Remark. The limit comparison test is especially useful when an is a rational function. In that
case, ignoring the lower-order terms in both the numerator and the denominator of an gives
rise to a simple rational function bn for which the limit comparison test applies.

Example 5.26. We use the limit comparison test to check the series

∞∑
n=1

2n2 + n + 1

n3 + 2

for convergence. Let an denote its nth term, which we are going to compare with

bn =
2n2

n3
=

2

n
.

To see that an and bn are roughly the same thing when n is large, we compute

lim
n→∞

an

bn

= lim
n→∞

2n2 + n + 1

n3 + 2
· n

2
= lim

n→∞
2n3 + n2 + n

2n3 + 4
= 1.

By the limit comparison test, the series corresponding to an converges if and only if the one
corresponding to bn does. Since the latter is a divergent p-series, they must both diverge.

Theorem 5.27 (Ratio Test). Let
∑∞

n=1 an be a given series and consider the limit

L = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ .

If L < 1, then the given series converges. And if L > 1, then the given series diverges.

Remark. The ratio test provides no conclusions for the remaining case L = 1. Should that
case arise, one has to apply some other test for convergence. The ratio test is especially useful
when an involves either exponents or factorials.

Example 5.28. We use the ratio test to check the series

∞∑
n=1

n

2n

for convergence. In this case, the ratio of two consecutive terms has limit

L = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

n + 1

n
· 2n

2n+1
= lim

n→∞
n + 1

2n
=

1

2
.

Since this is strictly smaller than 1, the given series converges by the ratio test.

Definition 5.29 (Absolute convergence). A series
∑∞

n=1 an is called absolutely convergent,
if the series

∑∞
n=1 |an| is convergent.



38 CHAPTER 5. SEQUENCES AND SERIES

Theorem 5.30 (Absolute convergence). Absolute convergence implies convergence: if the
series with the absolute values converges, then the series without them converges as well.

Example 5.31. Consider the alternating series

∞∑
n=1

(−1)n−1

n2
.

If we replace the nth term by its absolute value, then we end up with the p-series

∞∑
n=1

1

n2
,

which is known to converge. This shows that the given series converges absolutely. Using the
last theorem, we conclude that the original series converges as well.

Theorem 5.32 (Limits and inequalities). Suppose {an} and {bn} are convergent with

an ≤ bn for all n ≥ 1.

Then one may take limits of both sides to conclude that

lim
n→∞

an ≤ lim
n→∞

bn.

Theorem 5.33 (Alternating Series Test). Suppose {an} is non-negative, decreasing with

lim
n→∞

an = 0.

Then the alternating series
∞∑

n=1

(−1)n−1an must necessarily converge.

Example 5.34. To show that
∞∑

n=1

(−1)n−1 n
n2+1

converges, we need only check that the function

f(x) =
x

x2 + 1
, x ≥ 1

is decreasing to zero. Now, the fact that f is decreasing follows by the quotient rule since

f ′(x) =
x2 + 1− 2x · x

(x2 + 1)2
=

1− x2

(x2 + 1)2
≤ 0

whenever x ≥ 1. As for the fact that f is decreasing to zero, this follows by the computation

lim
x→∞

f(x) = lim
x→∞

x

x2 + 1
= lim

x→∞
1/x

1 + 1/x2
=

0

1 + 0
= 0.
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5.4 Power series

Definition 5.35 (Power series). A power series is a sum of powers of x such as

f(x) =
∞∑

n=0

anxn = a0 + a1x + a2x
2 + . . .

for some coefficients an ∈ R. As a function of x, this may only be defined for the values of x
for which the series converges; one always uses the ratio test to determine those values.

Definition 5.36 (Radius of convergence). If a power series converges when |x| < R and
diverges when |x| > R, then we call R the radius of convergence.

Example 5.37. Consider the power series
∑∞

n=0
xn

n+1
. In this case, we have

L = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

|x|n+1

|x|n · n + 1

n + 2
= |x| · lim

n→∞
n + 1

n + 2
= |x|.

In view of the ratio test then, the series converges when |x| < 1 and it diverges when |x| > 1.
In particular, its radius of convergence is equal to R = 1.

Example 5.38. Consider the power series
∑∞

n=0
xn

n!
. In this case, we have

L = lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

|x|n+1

|x|n · n!

(n + 1)!
= lim

n→∞
|x|

n + 1
= 0.

Since this is smaller than 1, the series converges by the ratio test (for any x whatsoever).

Theorem 5.39 (Differentiation of power series). Suppose that the power series

f(x) =
∞∑

n=0

anxn

converges when |x| < R. Then the power series

g(x) =
∞∑

n=0

nanx
n−1

converges when |x| < R as well, and we also have f ′(x) = g(x) for all such x. In other words,
one may differentiate a power series by differentiating it term by term.

Notation (Higher derivatives). The nth derivative of a given function f(x) is usually de-
noted by f (n)(x). In particular, one has f (1)(x) = f ′(x) and f (0)(x) = f(x) by convention.
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Definition 5.40 (Taylor series and polynomials). Suppose f is differentiable an infinite
number of times. Then its Taylor series (around the point x = 0) is defined to be the series

T (x) =
∞∑

n=0

f (n)(0)

n!
· xn.

The Nth Taylor polynomial of f is defined as a truncated version of this series, namely

TN(x) =
N∑

n=0

f (n)(0)

n!
· xn.

Theorem 5.41 (Taylor’s theorem, integral form). Suppose f is differentiable an infinite
number of times. Then the difference between f and its Nth Taylor polynomial is given by

f(x)− TN(x) =

∫ x

0

f (N+1)(t)

N !
· (x− t)N dt.

Theorem 5.42 (Taylor’s theorem, differential form). Suppose f is differentiable an infi-
nite number of times. Then there exists a number c between 0 and x such that

f(x)− TN(x) =
f (N+1)(c)

(N + 1)!
· xN+1.

Remark. To show that a function f(x) is equal to its Taylor series, one has to show that

0 = f(x)− T (x) = lim
N→∞

[f(x)− TN(x)].

The last two theorems are useful because they allow us to simplify the right hand side.

Theorem 5.43 (sin and cos). There exists a unique pair of functions sin x, cos x such that

(sin x)′ = cos x, (cos x)′ = − sin x, sin 0 = 0, cos 0 = 1.

Moreover, these functions are defined for all x ∈ R and they have the following properties:

(a) sin x is an odd function in the sense that sin(−x) = − sin x for all x ∈ R;

(b) cos x is an even function in the sense that cos(−x) = cos x for all x ∈ R;

(c) sin2 x + cos2 x = 1 for all x ∈ R, hence | sin x| ≤ 1 and | cos x| ≤ 1 for all x ∈ R.

Theorem 5.44 (Known Taylor series). One has the formulas

ex =
∞∑

n=0

xn

n!
, sin x =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
, cos x =

∞∑
n=0

(−1)n x2n

(2n)!

for all x ∈ R, as well as the formula

log(1 + x) =
∞∑

n=1

(−1)n−1 xn

n
whenever |x| < 1.
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Application 5.45 (Other Taylor series). Using the formulas above, one can also compute
the Taylor series for related functions. For instance, the Taylor series of f(x) = x3 sin(2x) is

f(x) = x3

∞∑
n=0

(−1)n (2x)2n+1

(2n + 1)!
=

∞∑
n=0

(−1)n 22n+1 x2n+4

(2n + 1)!

and the Taylor series of g(x) = e1−x is

g(x) = ee−x = e

∞∑
n=0

(−x)n

n!
=

∞∑
n=0

e(−1)n xn

n!
.

Remark (Shifting indices). A series can be written in many different ways using the sigma
notation. For instance, it should be easy to see that the expressions

∞∑
n=1

an,

∞∑
n=2

an−1,

∞∑
n=4

an−3

are all equal. As a general rule for shifting the index of summation, one gets to increase the
values of n in the index while decreasing the values of n in the summand (and vice versa).

Example 5.46. Using the formula for a geometric series, one easily finds that

∞∑
n=1

xn =
∞∑

n=0

xn+1 = x

∞∑
n=0

xn =
x

1− x
whenever |x| < 1.

Application 5.47 (Computing sums). Several infinite series can be computed explicitly by
reducing them to the Taylor series of a known function. For instance, we can compute

∞∑
n=1

(−1)n 4n

n!
=

∞∑
n=1

(−4)n

n!
=

∞∑
n=0

(−4)n

n!
− 1 = e−4 − 1

using the Taylor series for the exponential function, and we can similarly compute

∞∑
n=1

(−1)n 4n+1

(2n + 1)!
=

∞∑
n=1

(−1)n 22n+2

(2n + 1)!
= 2

(
sin 2− 21

1!

)
= 2 sin 2− 4.

Theorem 5.48 (Binomial series). Given any real number α, one has the formula

(1 + x)α = 1 + αx +
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + . . .

whenever |x| < 1. In the special case that α = n is a positive integer, this formula reads

(1 + x)n = 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + . . . + nxn−1 + xn

and it actually holds for any x ∈ R whatsoever.
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Application 5.49 (Approximations). The Taylor series around the point x = 0 expresses a
given function as a sum of powers of x. When x is sufficiently small, however, the higher-order
powers of x are negligible and can thus be ignored when seeking an approximation to a given
function. For instance, the Taylor series for the sine function is

sin x =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− . . .

and this leads to the approximation sin x ≈ x− x3/6 for all small enough x.

Example 5.50. We use the 3rd Taylor polynomial for the sine function to show that sin 1 is
positive. By above, the 3rd Taylor polynomial of f(x) = sin x is

T3(x) = x− x3

6
=⇒ T3(1) = 1− 1

6
=

5

6
.

The value T3(1) = 5/6 is not really the actual value of f(1) = sin 1, however we do have

f(1)− T3(1) =
f (4)(c)

4!
=

f (4)(c)

24

for some c ∈ (0, 1) by Taylor’s theorem. Since f (4)(x) = sin x for all x, this gives

− 1

24
≤ f(1)− T3(1) ≤ 1

24
.

Recalling the values of f(1) and T3(1), we may thus conclude that

− 1

24
≤ sin 1− 20

24
≤ 1

24
=⇒ 19

24
≤ sin 1 ≤ 21

24
.

5.5 Trigonometric functions

Theorem 5.51 (Definition of π). The sine function has at least one positive root, and we
shall denote by π the smallest such root. Then we have 0 < π < 4, and we also have

sin x > 0 for all x ∈ (0, π).

Theorem 5.52 (Trigonometric formulas). Given any real numbers x and y, one has

sin(x + y) = sin x cos y + sin y cos x, cos(x + y) = cos x cos y − sin x sin y.

Using these two identities, it is now easy to verify that

sin(2x) = 2 sin x cos x, sin2 x =
1− cos(2x)

2
, cos2 x =

1 + cos(2x)

2
.

In addition, both sin x and cos x are periodic functions in the sense that

sin(x + 2π) = sin x, cos(x + 2π) = cos x.
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Theorem 5.53 (Euler’s formula). Letting i =
√−1 be the imaginary root of −1, one has

eix = cos x + i sin x for all x ∈ R.

Example 5.54. We use the previous theorem to establish a simple formula for sin(3x). Here,
the key idea is to replace the sine function by an exponential function and then use the main
properties of the latter. More precisely, sin(3x) is the imaginary part of

e3ix = (eix)3 = (cos x + i sin x)3

= cos3 x + 3 cos2 x(i sin x) + 3 cos x(i sin x)2 + (i sin x)3.

Using the fact that i2 = −1 and i3 = −i, we may thus conclude that

e3ix = cos3 x + 3i cos2 x sin x− 3 cos x sin2 x− i sin3 x.

Since sin(3x) is given by the imaginary part of e3ix, this also implies that

sin(3x) = 3 cos2 x sin x− sin3 x.

Theorem 5.55 (Polar coordinates). Let (x, y) be a point on the plane other than the origin.
Then there exist a unique r > 0 and a unique θ ∈ [0, 2π) such that x = r cos θ and y = r sin θ.

5.6 Area and volume

Definition 5.56 (Area below a graph). Suppose f is continuous and non-negative on [a, b].
Then the area that lies between the graph of f and the x-axis is given by the formula

Area =

∫ b

a

f(x) dx.

Definition 5.57 (Area between two graphs). Suppose f, g are continuous on [a, b] with

f(a) = g(a), f(b) = g(b), f(x) ≥ g(x) for all x.

Then the area that lies between the graphs of the two functions is given by the formula

Area =

∫ b

a

[
f(x)− g(x)

]
dx.

Example 5.58. Let f(x) = x2 and g(x) = 8
√

x. To find the area that lies between the graphs
of these two functions, we first note that the graphs intersect when

x2 = 8
√

x =⇒ x4 = 64x =⇒ x(x3 − 64) = 0 =⇒ x = 0, 4.

Moreover, a quick sketch shows that the graph of g lies above the graph of f between these two
points, so the desired area is given by

Area =

∫ 4

0

[
8
√

x− x2
]
dx =

∫ 4

0

[
8x1/2 − x2

]
dx =

[
16x3/2

3
− x3

3

]4

0

=
64

3
.
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Theorem 5.59 (Area of a circle). A circle of radius r has area πr2.

Definition 5.60 (Volume). Suppose f is continuous on [a, b] and let R be the region that lies
between the graph of f and the x-axis. Then the volume generated upon rotation of R around
the x-axis is given by the formula

Volume =

∫ b

a

πf(x)2 dx.

Example 5.61. We compute the volume of a sphere of radius r. Since such a sphere can be
obtained by rotating the graph of f(x) =

√
r2 − x2 around the x-axis, its volume is

Volume =

∫ r

−r

πf(x)2 dx =

∫ r

−r

π(r2 − x2) dx = π

[
r2x− x3

3

]r

−r

=
4πr3

3
.

Example 5.62. We compute the volume of a cone of radius r and height h. Since such a cone
can be obtained by rotating the graph of f(x) = rx/h around the x-axis, its volume is

Volume =

∫ h

0

πf(x)2 dx =

∫ h

0

πr2x2

h2
dx =

[
πr2x3

3h2

]h

0

=
πr2h

3
.


