
Chapter 2

Limits and continuity

2.1 The definition of a limit

Definition 2.1 (ε-δ definition). Let f be a function and y ∈ R a fixed number. Take x to
be a point which approaches y without being equal to y. If there exists a number L that the
values f(x) approach as x approaches y, then one expresses this fact by writing

lim
x→y

f(x) = L.

More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that

0 6= |x− y| < δ =⇒ |f(x)− L| < ε.

If there exists no number L with this property, then we say that lim
x→y

f(x) does not exist.

Proposition 2.2 (Properties of limits). Each of the following statements is true.

(a) The limit of a sum is equal to the sum of the limits, namely

lim
x→y

f(x) = L and lim
x→y

g(x) = M =⇒ lim
x→y

[f(x) + g(x)] = L + M.

(b) The limit of a product is equal to the product of the limits, namely

lim
x→y

f(x) = L and lim
x→y

g(x) = M =⇒ lim
x→y

[f(x) · g(x)] = LM.

(c) When defined, the limit of a quotient is equal to the quotient of the limits, namely

lim
x→y

f(x) = L and lim
x→y

g(x) = M 6= 0 =⇒ lim
x→y

f(x)

g(x)
=

L

M
.
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Lemma 2.3 (Basic limits). Let b, y ∈ R be some fixed numbers.

(i) If f(x) = b for all x ∈ R, then lim
x→y

f(x) = b. In other words, lim
x→y

b = b.

(ii) If f(x) = x for all x ∈ R, then lim
x→y

f(x) = y. In other words, lim
x→y

x = y.

Theorem 2.4 (Limits of special functions). Let y ∈ R be some fixed number.

(a) The limit of a polynomial f can be computed by simple substitution, namely

lim
x→y

f(x) = f(y).

(b) The limit of a rational function can be computed by simple substitution, namely

lim
x→y

f(x)

g(x)
=

f(y)

g(y)

for all polynomials f and g, provided that g(y) 6= 0.

2.2 Continuous functions

Definition 2.5 (Continuity). Let f be a function and y ∈ R a fixed number. We say that f
is continuous at y in the case that

lim
x→y

f(x) = f(y).

In other words, f is continuous at y if, given any ε > 0, there exists some δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

We say that f is discontinuous at y, if f is not continuous at y; we say that f is continuous on
an interval I, if f is continuous at all points y ∈ I; and we also say that f is continuous, if f is
continuous at all points at which it is defined.

Example 2.6 (Discontinuous at one point). Let f be the function defined by

f(x) =

{
x if x < 1
2 if x ≥ 1

}
.

Then f is discontinuous at y = 1.

Example 2.7 (Discontinuous at all points). Let f be the function defined by

f(x) =

{
1 if x ∈ Q
0 if x /∈ Q

}
.

Then f is discontinuous at y for all y ∈ R.



2.2. CONTINUOUS FUNCTIONS 11

Definition 2.8 (Composition of functions). Given two functions f and g, we define their
composition f ◦ g by the formula (f ◦ g)(x) = f(g(x)).

Proposition 2.9 (Continuous functions). Each of the following statements is true.

(a) All polynomials and all rational functions are continuous wherever they are defined.

(b) If each of f, g is continuous at y, then so are their sum f + g and their product fg.

(c) If each of f, g is continuous at y, then so is their quotient f/g, as long as g(y) 6= 0.

(d) If g is continuous at y and f is continuous at g(y), then f ◦ g is continuous at y.

Definition 2.10 (Open and closed). An interval is said to be open, if it is of the form

(−∞, b), (a, b), (a, +∞).

An interval is said to be closed, if it is of the form

(−∞, b], [a, b], [a, +∞).

In particular, closed intervals contain their endpoints, whereas open intervals do not.

Lemma 2.11 (Open intervals). Let I be an open interval and let y ∈ I. Then there exists
some δ > 0 such that (y − δ, y + δ) is a subset of I. Namely, there exists some δ > 0 such that

|x− y| < δ =⇒ x ∈ I.

Theorem 2.12 (Functions on open intervals). Suppose the functions f, g agree on an open
interval I; that is, suppose f(x) = g(x) for all x ∈ I. If g is continuous on I, then so is f .

Example 2.13 (Checking continuity). Let f be the function defined by

f(x) =

{
2x + 1 if x ≤ 1
5− 2x if x > 1

}
.

Then f agrees with a polynomial on the open interval (−∞, 1), so it is continuous there. It is
continuous on (1,∞) as well for similar reasons. To check continuity at y = 1, we note that

|f(x)− f(1)| = |f(x)− 3| =
{ |2x− 2| if x ≤ 1
|2− 2x| if x > 1

}
= |2x− 2|.

Given any ε > 0, we can then set δ = ε/2 to find that

|x− 1| < δ =⇒ |f(x)− f(1)| = 2 · |x− 1| < 2δ = ε.

This establishes continuity at y = 1 as well, so f is continuous at all points.



12 CHAPTER 2. LIMITS AND CONTINUITY

2.3 Properties of continuity

Lemma 2.14 (Continuity and positivity). Suppose that f is continuous at y.

(a) If f(y) > 0, then there exists some δ > 0 such that f(x) > 0 for all x ∈ (y − δ, y + δ).

(b) If f(y) < 0, then there exists some δ > 0 such that f(x) < 0 for all x ∈ (y − δ, y + δ).

Theorem 2.15 (BOLZANO’S THEOREM). Suppose that f is continuous on [a, b].

(a) If f(a) < 0 < f(b), then there exists some x ∈ (a, b) such that f(x) = 0.

(b) If f(b) < 0 < f(a), then there exists some x ∈ (a, b) such that f(x) = 0.

Application 2.16 (Existence of roots). Let f be the function defined by f(x) = x3−x− 1.
Being a polynomial, f is then continuous on [1, 2]. Since f(1) = −1 < 0 and f(2) = 5 > 0, we
can then apply Bolzano’s theorem to find some x ∈ (1, 2) such that f(x) = 0.

Theorem 2.17 (Square roots). Given any y ≥ 0, there exists a unique real number x ≥ 0
such that x2 = y. We shall denote this particular number by x =

√
y.

Proposition 2.18 (Continuous functions). Each of the following statements is true.

(a) All polynomials and all rational functions are continuous wherever they are defined.

(b) Sums, products, quotients and compositions of continuous functions are continuous.

(c) The square root function, which is defined by f(x) =
√

x for all x ≥ 0, is continuous.

(d) The absolute value function, which is defined by f(x) = |x| for all x ∈ R, is continuous.

Example 2.19 (Limits by simple substitution). Using the proposition above, we find

lim
x→2

√
x2 + 5 =

√
22 + 5 =

√
9 = 3

because
√

x2 + 5 is the composition of continuous functions. For similar reasons, one also has

lim
x→4

|√x− x| = |
√

4− 4| = |2− 4| = 2.

Theorem 2.20 (Quadratic formula). Let a, b, c ∈ R be fixed real numbers with a 6= 0.

(a) If b2 − 4ac ≥ 0, then the quadratic equation ax2 + bx + c = 0 has roots

x1 =
−b−√b2 − 4ac

2a
, x2 =

−b +
√

b2 − 4ac

2a
.

(b) If b2 − 4ac < 0, then the quadratic equation ax2 + bx + c = 0 has no roots.
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Example 2.21. To solve the inequality x2−3x+2 < 0, one solves the equality x2−3x+2 = 0
first. Since the two roots are x1 = 1 and x2 = 2, we get x2− 3x + 2 = (x− 1)(x− 2). Then the
table below suggests that x2 − 3x + 2 < 0 if and only if 1 < x < 2.

x 1 2
x− 1 − + +
x− 2 − − +

x2 − 3x + 2 + − +

Theorem 2.22 (INTERMEDIATE VALUE THEOREM). Suppose that f is continuous
on a closed interval [a, b]. Then f attains all values between f(a) and f(b). More precisely,

(a) given any f(a) < c < f(b), there exists some x ∈ (a, b) such that f(x) = c.

(b) given any f(b) < c < f(a), there exists some x ∈ (a, b) such that f(x) = c.

Theorem 2.23 (Continuity and lower/upper bounds). If f is continuous on a closed
interval [a, b], then its values f(x) have both a lower bound and an upper bound. That is, there
exist numbers M1,M2 ∈ R such that M1 ≤ f(x) ≤ M2 for all x ∈ [a, b].

Remark. This theorem is not generally valid for other kinds of intervals. For instance, it is
easy to check that f(x) = 1/x has no upper bound on (0, 1).

Theorem 2.24 (EXTREME VALUE THEOREM). Suppose f is continuous on a closed
interval [a, b]. Then f attains both its minimum and its maximum value on [a, b]. That is, there
exist points x1, x2 ∈ [a, b] such that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b].

Remark. This theorem is not generally valid for other kinds of intervals. For instance, it
should be clear that f(x) = x attains neither a minimum nor a maximum value on (0, 1).

2.4 Limits at infinity

Definition 2.25 (ε-N definition). Let f be a function. If there exists a number L that the
values f(x) approach for large enough values of x, then one expresses this fact by writing

lim
x→+∞

f(x) = L.

More precisely, this equation means that given any ε > 0, there exists some N > 0 such that

x > N =⇒ |f(x)− L| < ε.

If there exists no number L with this property, then we say that lim
x→+∞

f(x) does not exist.

Example 2.26. Given any natural number n, one has lim
x→+∞

1

xn
= 0.
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Proposition 2.27 (Properties of limits). Each of the following statements is true.

(a) The limit of a sum is equal to the sum of the limits, namely

lim
x→+∞

f(x) = L and lim
x→+∞

g(x) = M =⇒ lim
x→+∞

[f(x) + g(x)] = L + M.

(b) The limit of a product is equal to the product of the limits, namely

lim
x→+∞

f(x) = L and lim
x→+∞

g(x) = M =⇒ lim
x→+∞

[f(x) · g(x)] = LM.

(c) When defined, the limit of a quotient is equal to the quotient of the limits, namely

lim
x→+∞

f(x) = L and lim
x→+∞

g(x) = M 6= 0 =⇒ lim
x→+∞

f(x)

g(x)
=

L

M
.

Example 2.28 (Limits of rational functions at infinity). Given a rational function, one
can easily compute its limit as x → +∞. The main step is to divide both the numerator and
the denominator by the highest power of x that appears downstairs. For instance, one has

lim
x→+∞

2x3 + 3x2 + 5

x3 − 2x2 + x
= lim

x→+∞
2 + 3

x
+ 5

x3

1− 2
x

+ 1
x2

=
2 + 0 + 0

1− 0 + 0
= 2

by Example 2.26 and since x 6= 0 here. Using the same argument, one similarly finds that

lim
x→+∞

x2 + 4x− 3

x3 − 7x + 9
= lim

x→+∞

1
x

+ 4
x2 − 3

x3

1− 7
x2 + 9

x3

=
0 + 0− 0

1− 0 + 0
= 0.

Definition 2.29 (Limits at −∞). The limit of a function as x → −∞ is defined by

lim
x→−∞

f(x) = lim
x→+∞

f(−x),

provided that this limit exists. We say that lim
x→−∞

f(x) does not exist, otherwise.

Remark. In view of the definition above, properties for limits as x → −∞ follow from the
corresponding properties for limits as x → +∞. In particular, one also has

lim
x→−∞

1

xn
= 0

for each n ∈ N, and the limit of a sum/product/quotient is equal to the sum/product/quotient
of the limits, respectively. I shall not bother to list these facts in a separate proposition. Using
these facts as above, one can then compute limits of rational functions such as

lim
x→−∞

3x2 − 3x + 4

x2 − 4x + 6
= lim

x→−∞
3− 3

x
+ 4

x2

1− 4
x

+ 6
x2

=
3− 0 + 0

1− 0 + 0
= 3,

for instance. Some other methods for computing limits will be given in the next chapter.


