
MA121, 2006 Exam #1
Solutions

1. Make a table listing the min, inf, max and sup of each of the following sets; write DNE
for all quantities which fail to exist. You need not justify any of your answers.

(a) A =
{
n ∈ N : 1

n
< 2

3

}

(b) B = {x ∈ R : x2 < −1}
(c) C = {x ∈ Z : x ≥ 3 and 2x < 7}
(d) D = {x ∈ R : |x + 1| < 1}

• A complete list of answers is provided by the following table.

min inf max sup
A 2 2 DNE DNE
B DNE DNE DNE DNE
C 3 3 3 3
D DNE −2 DNE 0

• The set A contains all n ∈ N with n > 3
2
; this means that A = {2, 3, 4, . . .}.

• The set B is empty because x2 ≥ 0 > −1 for each x ∈ R.

• The set C contains all integers x with 3 ≤ x < 7
2
; this means that C = {3}.

• The set D contains the real numbers x whose distance from −1 is strictly less than 1.
Based on this fact, it is easy to see that D = (−2, 0).

2. Show that 2n ≥ n + 1 for all n ∈ N.

• We use induction to prove the given inequality for all n ∈ N.

• When n = 1, the given inequality holds with equality because 21 = 2 = 1 + 1.

• Suppose that the inequality holds for some n, in which case

2n ≥ n + 1.

Multiplying this inequality with the positive number 2, we then get

2n+1 ≥ 2(n + 1) = 2n + 2 ≥ n + 2 = (n + 1) + 1

because n ≥ 0 for all n ∈ N. This proves the given inequality for n + 1, as needed.

3. Show that there exists some 0 < x < 1 such that 2x2 + 3x3 = x5 + 1.

Let f(x) = 2x2 + 3x3 − x5 − 1 for all x ∈ [0, 1]. Being a polynomial, f is then continuous
on the closed interval [0, 1]. Once we now note that

f(0) = −1 < 0, f(1) = 2 + 3− 1− 1 = 3 > 0,

we may use Bolzano’s theorem to conclude that f(x) = 0 for some x ∈ (0, 1). This also
implies that 2x2 + 3x3 = x5 + 1 for some 0 < x < 1, as needed.
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4. Let f be a function such that |f(x)− 1| ≤ 2|x| for all x ∈ R. Show that lim
x→0

f(x) = 1.

Let ε > 0 be given and set δ = ε/2. Then δ > 0 and we easily find that

0 6= |x− 0| < δ =⇒ |f(x)− 1| ≤ 2|x| < 2δ = ε.

5. Let A,B be nonempty subsets of R such that sup A ≤ b for all b ∈ B. Show that

inf A ≤ inf B.

As a hint, you might wish to show that inf A ≤ sup A and that sup A ≤ inf B, instead.

• Since inf A is a lower bound of A and sup A is an upper bound of A, one has

inf A ≤ a ≤ sup A

for all a ∈ A. This certainly implies that inf A ≤ sup A.

• Since sup A ≤ b for all b ∈ B by assumption, sup A is a lower bound of B, so it can
only be as large as the greatest lower bound of B. This shows that sup A ≤ inf B.

• In view of these observations, one now finds that inf A ≤ sup A ≤ inf B, as needed.

6. Let f be the function defined by

f(x) =

{
x3+x2−2

x−1
if x 6= 1

5 if x = 1

}
.

Show that f is continuous at all points. As a hint, one may avoid the ε-δ definition here.

• Assuming that x 6= 1, one may use division of polynomials to write

f(x) =
x3 + x2 − 2

x− 1
= x2 + 2x + 2.

This means that f agrees with a polynomial on the open intervals (−∞, 1) and (1, +∞).
Since all polynomials are continuous, f itself must be continuous on these intervals.

• To check continuity at the remaining point y = 1, we have to show that

lim
x→1

f(x) = f(1).

Let us then try to compute this limit. Assuming that x 6= 1, as we may, we get

lim
x→1

f(x) = lim
x→1

x3 + x2 − 2

x− 1
= lim

x→1
(x2 + 2x + 2).

Since limits of polynomials can be computed by simple substitution, this also implies

lim
x→1

f(x) = lim
x→1

(x2 + 2x + 2) = 12 + 2 + 2 = 5 = f(1).

In particular, f is continuous at y = 1 as well, so f is continuous at all points.
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7. Given the set A =
{

x
x2+1

: x ∈ R}
, show that inf A = −1

2
.

Since both x2 + 1 and 2 are positive numbers, it is easy to check that

x

x2 + 1
≥ −1

2
⇐⇒ 2x ≥ −x2 − 1 ⇐⇒ x2 + 2x + 1 ≥ 0

⇐⇒ (x + 1)2 ≥ 0.

Note that the last inequality obviously holds and that we do have equality when x = −1.
Thus, the first inequality holds as well. This makes −1

2
an element of A which is at least

as small as any other element of A, so min A = −1
2
. Since a minimum exists in this case,

an infimum also does and the two are equal; so inf A = −1
2

as well.

8. Show that the function f defined by

f(x) =

{
2x if x ≤ 1

x + 3 if x > 1

}

is discontinuous at y = 1.

We will show that the ε-δ definition of continuity fails when ε = 2. Suppose it does not
fail. Since f(1) = 2, there must then exist some δ > 0 such that

|x− 1| < δ =⇒ |f(x)− 2| < 2. (∗)

Let us now examine the last equation for the choice x = 1 + δ
2
. On one hand, we have

|x− 1| = δ

2
< δ,

so the assumption in equation (∗) holds. On the other hand, we also have

|f(x)− 2| = |x + 3− 2| = x + 1 = 2 +
δ

2
> 2

because x = 1 + δ
2

> 1 here. This actually violates the conclusion in equation (∗).
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