MA121, 2006 Exam #1 Solutions

1. Make a table listing the min, inf, max and sup of each of the following sets; write DNE for all quantities which fail to exist. You need not justify any of your answers.

- (a) $A = \left\{ n \in \mathbb{N} : \frac{1}{n} < \frac{2}{3} \right\}$ (c) $C = \left\{ x \in \mathbb{Z} : x \ge 3 \text{ and } 2x < 7 \right\}$
- (b) $B = \{x \in \mathbb{R} : x^2 < -1\}$ (d) $D = \{x \in \mathbb{R} : |x+1| < 1\}$
- A complete list of answers is provided by the following table.

	min	\inf	max	\sup
A	2	2	DNE	DNE
В	DNE	DNE	DNE	DNE
C	3	3	3	3
D	DNE	-2	DNE	0

- The set A contains all $n \in \mathbb{N}$ with $n > \frac{3}{2}$; this means that $A = \{2, 3, 4, \ldots\}$.
- The set B is empty because $x^2 \ge 0 > -1$ for each $x \in \mathbb{R}$.
- The set C contains all integers x with $3 \le x < \frac{7}{2}$; this means that $C = \{3\}$.
- The set D contains the real numbers x whose distance from -1 is strictly less than 1. Based on this fact, it is easy to see that D = (-2, 0).
- **2**. Show that $2^n \ge n+1$ for all $n \in \mathbb{N}$.
 - We use induction to prove the given inequality for all $n \in \mathbb{N}$.
 - When n = 1, the given inequality holds with equality because $2^1 = 2 = 1 + 1$.
 - Suppose that the inequality holds for some n, in which case

$$2^n \ge n+1.$$

Multiplying this inequality with the positive number 2, we then get

$$2^{n+1} \ge 2(n+1) = 2n+2 \ge n+2 = (n+1)+1$$

because $n \ge 0$ for all $n \in \mathbb{N}$. This proves the given inequality for n + 1, as needed.

3. Show that there exists some 0 < x < 1 such that $2x^2 + 3x^3 = x^5 + 1$.

Let $f(x) = 2x^2 + 3x^3 - x^5 - 1$ for all $x \in [0, 1]$. Being a polynomial, f is then continuous on the closed interval [0, 1]. Once we now note that

$$f(0) = -1 < 0,$$
 $f(1) = 2 + 3 - 1 - 1 = 3 > 0,$

we may use Bolzano's theorem to conclude that f(x) = 0 for some $x \in (0, 1)$. This also implies that $2x^2 + 3x^3 = x^5 + 1$ for some 0 < x < 1, as needed.

4. Let f be a function such that $|f(x) - 1| \le 2|x|$ for all $x \in \mathbb{R}$. Show that $\lim_{x \to 0} f(x) = 1$. Let $\varepsilon > 0$ be given and set $\delta = \varepsilon/2$. Then $\delta > 0$ and we easily find that

$$0 \neq |x - 0| < \delta \implies |f(x) - 1| \le 2|x| < 2\delta = \varepsilon.$$

5. Let A, B be nonempty subsets of \mathbb{R} such that $\sup A \leq b$ for all $b \in B$. Show that

$$\inf A \le \inf B.$$

As a hint, you might wish to show that $\inf A \leq \sup A$ and that $\sup A \leq \inf B$, instead.

• Since $\inf A$ is a lower bound of A and $\sup A$ is an upper bound of A, one has

$$\inf A \le a \le \sup A$$

for all $a \in A$. This certainly implies that $\inf A \leq \sup A$.

- Since $\sup A \leq b$ for all $b \in B$ by assumption, $\sup A$ is a lower bound of B, so it can only be as large as the greatest lower bound of B. This shows that $\sup A \leq \inf B$.
- In view of these observations, one now finds that $\inf A \leq \sup A \leq \inf B$, as needed.
- **6**. Let f be the function defined by

$$f(x) = \left\{ \begin{array}{cc} \frac{x^3 + x^2 - 2}{x - 1} & \text{if } x \neq 1\\ 5 & \text{if } x = 1 \end{array} \right\}$$

Show that f is continuous at all points. As a hint, one may avoid the ε - δ definition here.

• Assuming that $x \neq 1$, one may use division of polynomials to write

$$f(x) = \frac{x^3 + x^2 - 2}{x - 1} = x^2 + 2x + 2.$$

This means that f agrees with a polynomial on the open intervals $(-\infty, 1)$ and $(1, +\infty)$. Since all polynomials are continuous, f itself must be continuous on these intervals.

• To check continuity at the remaining point y = 1, we have to show that

$$\lim_{x \to 1} f(x) = f(1).$$

Let us then try to compute this limit. Assuming that $x \neq 1$, as we may, we get

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^3 + x^2 - 2}{x - 1} = \lim_{x \to 1} \left(x^2 + 2x + 2 \right)$$

Since limits of polynomials can be computed by simple substitution, this also implies

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left(x^2 + 2x + 2 \right) = 1^2 + 2 + 2 = 5 = f(1).$$

In particular, f is continuous at y = 1 as well, so f is continuous at all points.

7. Given the set $A = \left\{ \frac{x}{x^2+1} : x \in \mathbb{R} \right\}$, show that $\inf A = -\frac{1}{2}$.

Since both $x^2 + 1$ and 2 are positive numbers, it is easy to check that

$$\frac{x}{x^2+1} \ge -\frac{1}{2} \quad \Longleftrightarrow \quad 2x \ge -x^2 - 1 \quad \Longleftrightarrow \quad x^2 + 2x + 1 \ge 0$$
$$\iff \quad (x+1)^2 \ge 0.$$

Note that the last inequality obviously holds and that we do have equality when x = -1. Thus, the first inequality holds as well. This makes $-\frac{1}{2}$ an element of A which is at least as small as any other element of A, so min $A = -\frac{1}{2}$. Since a minimum exists in this case, an infimum also does and the two are equal; so inf $A = -\frac{1}{2}$ as well.

8. Show that the function f defined by

$$f(x) = \left\{ \begin{array}{cc} 2x & \text{if } x \le 1\\ x+3 & \text{if } x > 1 \end{array} \right\}$$

is discontinuous at y = 1.

We will show that the ε - δ definition of continuity fails when $\varepsilon = 2$. Suppose it does not fail. Since f(1) = 2, there must then exist some $\delta > 0$ such that

$$|x-1| < \delta \implies |f(x)-2| < 2. \tag{(*)}$$

Let us now examine the last equation for the choice $x = 1 + \frac{\delta}{2}$. On one hand, we have

$$|x-1| = \frac{\delta}{2} < \delta,$$

so the assumption in equation (*) holds. On the other hand, we also have

$$|f(x) - 2| = |x + 3 - 2| = x + 1 = 2 + \frac{\delta}{2} > 2$$

because $x = 1 + \frac{\delta}{2} > 1$ here. This actually violates the conclusion in equation (*).