MAZ2EO1 Tutorial solutions #8

1. Let R be the region bounded by the curves y = 2 and y = 2. Let C be the boundary
of this region oriented counterclockwise. Use Green’s theorem to evaluate
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According to Green’s theorem, the given integral is equal to
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2. Use Green’s theorem to find the work done by F = (2xy,z? + 2zy) while moving a
particle from (2,0) to (—2,0) along the upper semicircle x* + y* = 4 and then back to
the point (2,0) along the z-axis.

Since the vector field F' is the same as in the previous problem, we have
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3. Compute the surface integral [ z?dS when o is the part of the cylinder y* + 2% = 4
that lies between the planes x = 0 and z = 3.

First, we note that a parametric equation of the given cylinder is
r=(r,y,z) = (x,2cosf,2sinb)
with 0 < 0 <27 and 0 < x < 3. Using this equation, we now get
r, X 9 = (1,0,0) x (0, —2sin6,2cos ) = (0, —2cos #, —2sin b)

and then the given integral becomes
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4. Find the mass of the lamina that has constant density ¢ and occupies the part of the
plane z + y + z = 1 which lies in the first octant.

In this case, we can express z as a function of z and y, so we get

z=fr,y)=1-2—y = dS:,/l—l—fg—f-fgdxdy:\/gd:rdy.

The mass of the lamina is the integral of density over the given surface, but we need
to determine the values of x and y, so we need to find the projection R of the lamina
onto the xy-plane. Taking z = 0 gives the line x +y = 1, so R is formed by this line
together with the coordinate axes z = 0 and y = 0. In particular, we have
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