MAZ2EO1 Tutorial solutions #6

. Use cylindrical coordinates to compute the volume of the solid which is bounded by
the paraboloid z = 2?2 + 4? from below and by the plane z = 4 from above.

The projection onto the zy-plane is the interior of the circle 2% 4 y? = 4, so
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. Use spherical coordinates to compute the volume of the solid which is bounded by the
cone ¢ = 7/3 from below and by the sphere p = 3 from above.

In terms of spherical coordinates, the volume of the given solid is
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. Use cylindrical coordinates to evaluate the integral
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In cylindrical coordinates, we have z(x* + y?) = r3 cos 6 and this implies
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. Let R be the region in the xy-plane which is bounded by the lines
r+y=1, T4y =2, y—ax =0, y—x=2.

Use an appropriate change of variables to compute the integral [[,(y* — z?) dA.

We use the change of variables u = x + y and v = y — x, which means that
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The Jacobian of this transformation is then
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so the given integral is equal to
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