MA2EO01 Tutorial solutions #5

1. Use polar coordinates to evaluate the integral
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Switching to polar coordinates, we can write the given integral as
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2. Use polar coordinates to evaluate the integral
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Switching to polar coordinates, we can write the given integral as
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Figure: The regions of integration for Problems 1 and 2.

3. The sphere of radius a around the origin is given by the parametric equation
r(0,¢) = (asin ¢ cosf,asin ¢sinb, acos @) ,

where 0 < 6 <27 and 0 < ¢ < 7. Use this fact to compute its area.

To compute the area, we first need to find the normal vector r4 X ry, namely
Ty = (acos ¢ cosh,acospsinb, —asing) ,
r9g = (—asin¢sinb, asin ¢ cos b, 0) ,

Ty X Tg = <a sin? ¢ cos 6, a® sin® ¢ sin 6, a sm¢cos¢>—asm¢ T.



Since 7 lies on the sphere of radius a, we have ||r|| = a and this implies
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. A lamina with density é(x,y) = x + y is bounded by the z-axis, the line x = 1 and the
curve y = /2. Find its mass and also its center of gravity.

The mass of the lamina is
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Its center of gravity is the point (zg,yo), where z; is given by

20 [! 27V™
// z(z +y) dyd:c—— x2y+% dz
13 2 |,
9 7/2 371
20 [N (e, PN 20 (27 ) 190
13 J, 2 131 7 6, 273
and g is similarly given by
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