MA2E01 Tutorial solutions #2

1. Find the equation of the plane that passes through the points

$$A(1,2,4), \qquad B(1,-1,0), \qquad C(2,3,1).$$

The normal vector to the plane is given by the cross product

$$\overrightarrow{AB} \times \overrightarrow{AC} = \langle 0, -3, -4 \rangle \times \langle 1, 1, -3 \rangle = \langle 13, -4, 3 \rangle.$$

Since the plane passes through the point A(1, 2, 4), its equation is then

$$13(x-1) - 4(y-2) + 3(z-4) = 0 \implies 13x - 4y + 3z = 17.$$

2. Find the equation of the line through (1, 2, 3) which is perpendicular to the line

x = 1 + t, y = 2 - 3t, z = 2t

and also parallel to the plane 2x - z = 1. *Hint: if a line is parallel to a plane, then it is perpendicular to the normal vector of the plane.*

The desired line is perpendicular to both (1, -3, 2) and (2, 0, -1), so its direction is

$$\boldsymbol{n} = \langle 1, -3, 2 \rangle \times \langle 2, 0, -1 \rangle = \langle 3, 5, 6 \rangle.$$

Since it passes through (1, 2, 3) with direction n, its equation is then

$$x = 1 + 3t$$
, $y = 2 + 5t$, $z = 3 + 6t$.

3. Sketch the level curves f(x, y) = k in the case that $f(x, y) = x + y^2$ and k = 0, 1, 2. Use these level curves to draw a rough sketch of the graph of f.

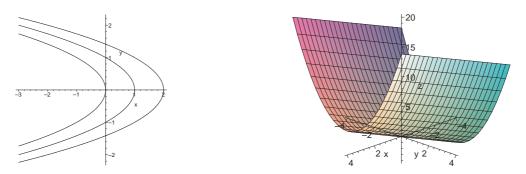


Figure 1: The level curves $x + y^2 = k$ and the graph of $z = x + y^2$.

4. Compute the partial derivatives f_x , f_y and f_{xy} in the case that $f(x, y) = y^2 e^{xy}$. In this case, $f_x(x, y) = y^2 e^{xy} (xy)_x = y^3 e^{xy}$ and the product rule gives

$$f_y(x,y) = 2ye^{xy} + y^2 e^{xy} (xy)_y = 2ye^{xy} + xy^2 e^{xy}.$$

Differentiating f_x with respect to y, one also finds that

$$f_{xy}(x,y) = 3y^2 e^{xy} + y^3 e^{xy} (xy)_y = 3y^2 e^{xy} + xy^3 e^{xy}.$$