MAZ2EO1 Tutorial solutions #10

1. Solve y"(t) — y(t) = sint subject to the conditions y(0) = 0 and y'(0) = 2.
Applying the Laplace transform to both sides gives
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and we can write this equation as
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Next, we divide by s? — 1 and use partial fractions to find that
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Using this fact and our table of Laplace transforms, we conclude that

2. Solve y"(t) — 2y'(t) — 3y(t) = t subject to the conditions y(0) = 1 and 3/(0) = 2.

Once again, we apply the Laplace transform to get

£2() — 39(0) — 1 0) ~2(s2(w) — 9(0)) ~32() =

S

and then simplify this equation to arrive at
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Noting that s* —2s — 3 = (s — 3)(s + 1), we employ partial fractions to find that
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Using this fact and our table of Laplace transforms, we conclude that
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3. Solve y"(t) — 4y(t) = 5e* subject to the conditions y(0) = 0 and ¢/(0) = 1.

Once again, we apply the Laplace transform to get
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and then simplify this equation to arrive at
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Noting that s* —4 = (s — 2)(s + 2), we employ partial fractions to find that
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For the rightmost term, the denominator s — 2 must be shifted to s and this gives
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4. Solve y"(t) + 4y(t) = u(t — m) subject to the conditions y(0) = 2 and y'(0) = 1.

Once again, we apply the Laplace transform to get
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and then simplify this equation to arrive at

—TSs

(s2+4)- L(y) =25+ 1+

Using this fact and partial fractions, we now find that
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If we ignore the exponential factor for the moment, then our table gives
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If we include the exponential factor, then ¢t becomes ¢t — m and we finally get
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5. Solve y"(t) + y(t) = u(t — ) + 6(t — 27) subject to the conditions y(0) = y/'(0) = 1.
Once again, we apply the Laplace transform to get
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and then simplify this equation to arrive at
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Using this fact and partial fractions, we now find that
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Once we now apply the inverse Laplace transform, we may finally conclude that

y(t) = cost +sint + u(t —m) — u(t — m) cos(t — m) + u(t — 2m) sin(t — 2m)
=cost +sint +u(t —m) + u(t — m) cost + u(t — 2m) sin .



