
Lecture 1, September 24

• Area between two graphs. If the graph of f lies above the graph of g, then the
area that lies between the two graphs from x = a to x = b is given by

Area =

∫

b

a

[f(x)− g(x)] dx.

• Volumes by slicing. A solid is placed along the x-axis between x = a and x = b. If
its cross section at each point x has area A(x), then the volume of the solid is

Volume =

∫

b

a

A(x) dx.
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Example 1. Let f(x) = 4x and g(x) = x2. To compute the area of the region that
lies between the two graphs, we note that the graphs intersect when

4x = x2 =⇒ x(x− 4) = 0 =⇒ x = 0, 4.

Since a quick sketch shows that the graph of f lies above the graph of g between the
two points of intersection, the area of the desired region is

Area =

∫

4

0

(4x− x2) dx =

[

2x2
−

x3

3

]4

0

= 32−
64

3
=

32

3
.

Example 2. Consider a cone of radius R and height H . To place such a cone along
the x-axis, we put its vertex at the origin and the center of its base at (H, 0).

r
R

Hx

The cross section of the cone at each point x is then a circle of radius r, where

r

x
=

R

H
=⇒ r =

Rx

H

by similar triangles. Since the cross section has area πr2 = πR2x2/H2, we get

Volume =

∫

H

0

πR2x2

H2
dx =

πR2H3

3H2
=

πR2H

3
.



Lecture 2, September 26

• Vectors. The vector that points from A(a1, a2, a3) to B(b1, b2, b3) is given by

−→
AB = ⟨b1 − a1, b2 − a2, b3 − a3⟩ .

Vector addition and scalar multiplication are defined component-wise:

−→v +−→w = ⟨v1 + w1, v2 + w2, v3 + w3⟩ , λ−→v = ⟨λv1, λv2, λv3⟩

whenever −→v = ⟨v1, v2, v3⟩, −→w = ⟨w1, w2, w3⟩ and λ is a scalar. Also, the expression

||−→v || =
√
v21 + v22 + v23

gives the length (or norm) of −→v , while similar formulas hold for vectors in R2.

• Dot product. The dot product of two vectors may be computed in two ways:

−→v · −→w = v1w1 + v2w2 + v3w3,
−→v · −→w = ||−→v || · ||−→w || · cos θ.

Here, the two vectors have the same starting point and θ is the angle between them.

• Parallel/orthogonal. Two vectors are parallel if and only if they are scalar multiples
of one another. Two vectors are orthogonal if and only if their dot product is zero.
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Example 1. Consider the triangle with vertices A(1, 0, 2), B(5, 3, 4) and C(3,−4, 4).
To see that the angle at the point A is a right angle, we note that

−→
AB = ⟨4, 3, 2⟩ ,

−→
AC = ⟨2,−4, 2⟩ =⇒

−→
AB ·

−→
AC = 8− 12 + 4 = 0.

To determine the angle at the point B, we use the formula

cosB =

−→
BA ·

−−→
BC

||
−→
BA|| · ||

−−→
BC||

=
⟨−4,−3,−2⟩ · ⟨−2,−7, 0⟩√

42 + 32 + 22
√
22 + 72

=
29√
29
√
53

=

√
29

53
.

Example 2. Consider the points A(1, 2, 3), B(4, 2, 1) and C(1, 1, 1). The vectors

−→
AB = ⟨3, 0,−2⟩ ,

−−→
BC = ⟨−3,−1, 0⟩

are not parallel, as they are not scalar multiples of one another. This means that they
describe different directions, so the three given points are not collinear.



Lecture 3, September 28

• Lines. The line that passes through A(a1, a2, a3) with direction v = ⟨v1, v2, v3⟩ can be
described using the parametric equations

x = a1 + tv1, y = a2 + tv2, z = a3 + tv3.

• Vector-valued functions. A vector-valued function is one that has the form

r(t) = ⟨f(t), g(t), h(t)⟩ .

Its limits, derivatives and integrals may all be computed component-wise. Its graph is
a curve in R3 and its derivative r′(t) is tangent to the curve at each point. If r(t) is
the position of a moving object, then r′(t) is its velocity and ||r′(t)|| is its speed.

• Tangent line. The tangent line to the curve r(t) at time t = t0 passes through the
point r(t0) with direction r′(t0). One may determine its equation as above.
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Example 1. Consider the points A(1, 2, 4) and B(5, 3, 2). To determine the line that
passes through these points, we note that the direction of this line is

−→
AB = ⟨5− 1, 3− 2, 2− 4⟩ = ⟨4, 1,−2⟩ .

Since the line passes through A(1, 2, 4) with that direction, its equation is then

x = 1 + 4t, y = 2 + t, z = 4− 2t.

Example 2. Suppose that the position of a moving object is r(t) = ⟨t3, 2t2, 5t⟩. Then
its velocity vector is r′(t) = ⟨3t2, 4t, 5⟩. To find the tangent line when t = 1, we note
that it passes through (1, 2, 5) with direction r′(1) = ⟨3, 4, 5⟩, so its equation is

x = 1 + 3t, y = 2 + 4t, z = 5 + 5t.

To compute the object’s speed at time t = 1, we note that

r′(1) = ⟨3, 4, 5⟩ =⇒ ||r′(1)|| =
√
32 + 42 + 52 =

√
50 = 5

√
2.



Lecture 4, October 1

• Cross product. The cross product of two vectors in R3 is defined by

v ×w = ⟨v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1⟩ .

This vector is perpendicular to both v and w, while its length is

||v ×w|| = ||v|| · ||w|| · sin θ.

• Normal vector. We say that the vector n is normal to a plane, if n is orthogonal
to every vector that lies on the plane. If a plane passes through A(a1, a2, a3) and its
normal vector is n = ⟨n1, n2, n3⟩, then its equation is

n1(x− a1) + n2(y − a2) + n3(z − a3) = 0.
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Example 1. Consider the points A(2, 3, 4), B(1, 0, 2) and C(3, 2, 1). To find the plane
that passes through these points, we note that its normal vector is

n =
−→
AB ×−→

AC = ⟨−1,−3,−2⟩ × ⟨1,−1,−3⟩ = ⟨7,−5, 4⟩ .

Since the plane passes through A(2, 3, 4), its equation is then

7(x− 2)− 5(y − 3) + 4(z − 4) = 0 =⇒ 7x− 5y + 4z = 15.

Example 2. Consider the line through P (2, 4, 1) and Q(4, 1, 5). To find the point at
which it intersects the plane x − 2y + 3z = 37, we first find the equation of the line.

Since
−→
PQ = ⟨2,−3, 4⟩ is the direction of the line, its equation is

x = 2 + 2t, y = 4− 3t, z = 1 + 4t.

The point we wish to find is the point which satisfies this equation (because it is on
the line) as well as x− 2y + 3z = 37 (because it is on the plane). This gives

(2 + 2t)− 2(4− 3t) + 3(1 + 4t) = 37 =⇒ 20t = 40 =⇒ t = 2,

so the point of intersection is the point

(x, y, z) = (2 + 2t, 4− 3t, 1 + 4t) = (6,−2, 9).



Lecture 5, October 3

• Functions of two variables. The domain of a function z = f(x, y) is the set of all
points (x, y) at which it is defined. The graph of such a function is a surface in R

3. To
draw a rough sketch of the graph, one looks at the level curves f(x, y) = k for various
values of k. These are curves in the xy-plane that correspond to horizontal slices of
the graph; they describe the part of the graph which lies at height z = k.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Consider the function z = x2 + y2. Then the level curve z = 1 is

z = 1 =⇒ x2 + y2 = 1,

the circle of radius 1 around the origin. One can easily draw this in the xy-plane, as
we do below in the left part of the figure. Similarly, the level curve z = 4 is

z = 4 =⇒ x2 + y2 = 4,

the circle of radius 2 around the origin. To get a rough sketch of the graph, recall that
the first circle is the horizontal slice at z = 1, while the second circle is the horizontal
slice at z = 4. Imagine lifting the first one up by 1 unit and the second one up by 4
units. When lifted, the circles around the origin become circles around the z-axis and
the overall shape of the graph is the one depicted below.
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Figure 1: The level curves x2 + y2 = k and the graph of z = x2 + y2.



Lecture 6, October 5

• Partial derivatives. Given a function f(x, y) of two variables, we define fx to be its
derivative with respect to x when y is treated as a constant. The partial derivative fx
gives the rate at which f is changing in the x-direction. The partial derivative fy is
defined similarly by differentiating with respect to y, while treating x as a constant.

• Mixed partials. If the mixed partial derivatives fxy and fyx are continuous, then
they must be equal to one another. This is the case for all standard functions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Let f(x, y) = x2y. Then fx = 2xy and fy = x2. The mixed partials are

fxy = (2xy)y = 2x, fyx = (x2)x = 2x.

Example 2. Let f(x, y) = xy2 + 2xy + y2. Then we have

fx = y2 + 2y, fy = 2xy + 2x+ 2y, fxy = fyx = 2y + 2.

Example 3. Let f(x, y) = sin(x2y). Using the chain rule, one finds that

fx(x, y) = cos(x2y) · (x2y)x = cos(x2y) · 2xy,
fy(x, y) = cos(x2y) · (x2y)y = cos(x2y) · x2.

Example 4. Let f(x, y) = y sin(xy). To compute fx, we argue as before to get

fx(x, y) = y cos(xy) · (xy)x = y2 cos(xy).

To compute fy, however, one needs to resort to the product rule; this gives

fy(x, y) = sin(xy) + y cos(xy) · (xy)y = sin(xy) + xy cos(xy).

Example 5. Let f(x, y, z) = (x3 + 2y2 + 3z)4. Then the first-order derivatives are

fx(x, y, z) = 4(x3 + 2y2 + 3z)3 · 3x2 = 12x2(x3 + 2y2 + 3z)3,

fy(x, y, z) = 4(x3 + 2y2 + 3z)3 · 4y = 16y(x3 + 2y2 + 3z)3,

fz(x, y, z) = 4(x3 + 2y2 + 3z)3 · 3 = 12(x3 + 2y2 + 3z)3.

In this case, equality of mixed partials means that

fxy = fyx, fxz = fzx, fyz = fzy.



Lecture 7, October 8

• Chain rule. Suppose that f(x, y) depends on two variables, each of which depends
on a third variable t. Then the derivative ft is the sum of two terms, namely

ft = fxxt + fyyt.

Similar formulas hold for functions of three or more variables; for instance,

f = f(x, y, z) =⇒ ft = fxxt + fyyt + fzzt.

• Implicit differentiation. Let F (x, y, z) = 0 be a relation between three variables. If
we view z as a function of x and y, then its partial derivatives are

∂z

∂x
= −Fx

Fz

,
∂z

∂y
= −Fy

Fz

.
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Example 1. Let z = x2y, where x = sin t+ 2s and y = et + s2t. Then we have

zt = zxxt + zyyt = 2xy · cos t+ x2 · (et + s2),

zs = zxxs + zyys = 2xy · 2 + x2 · 2st.

Example 2. Let z = exy, where x = u/v and y = u2 + 3v. In this case,

zu = zxxu + zyyu = yexy · (1/v) + xexy · 2u,
zv = zxxv + zyyv = yexy · (−u/v2) + xexy · 3.

Example 3. Let w = x2yz3, where x = 1 + t2, y = 2− t and z = 2− t3. Then

wt = wxxt + wyyt + wzzt

= 2xyz3 · 2t+ x2z3 · (−1) + 3x2yz2 · (−3t2).

At time t = 1, for instance, we have x = 2 and y = z = 1, so

wt = 4xyz3 − x2z3 − 9x2yz2 = 8− 4− 36 = −32.

Example 4. Suppose x, y, z are related by the formula xy2 + xz2 + yz = 0. Then

zx = −(xy2 + xz2 + yz)x
(xy2 + xz2 + yz)z

= − y2 + z2

2xz + y
,

zy = −(xy2 + xz2 + yz)y
(xy2 + xz2 + yz)z

= −2xy + z

2xz + y
.



Lecture 8, October 10

• Directional derivative. We denote by Duf(x0, y0) the rate at which the function f
changes at the point (x0, y0) in the direction of the unit vector u = ⟨a, b⟩; that is,

Duf(x0, y0) = afx(x0, y0) + bfy(x0, y0).

If the vector u does not have unit length, one may simply divide it by its length.

• Gradient vector. Given a function f(x, y) of two variables, we define its gradient to
be the vector ∇f(x, y) = ⟨fx, fy⟩. Using this notation, one can write

Duf(x0, y0) = u · ∇f(x0, y0).

The gradient vector ∇f gives the direction of most rapid increase at each point and
the rate of change in that direction is ||∇f ||. Similarly, −∇f gives the direction of
most rapid decrease at each point and the rate of change in that direction is −||∇f ||.

• Functions of more variables. When f = f(x, y, z), for instance, one has

∇f = ⟨fx, fy, fz⟩ , Duf = u · ∇f

and the gradient vector ∇f has the exact same interpretation as before.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Let f(x, y) = 3x2 − 4xy2. When it comes to the point (1, 1), we have

∇f = ⟨fx, fy⟩ =
⟨
6x− 4y2,−8xy

⟩
= ⟨2,−8⟩ .

Thus, the directional derivative of f in the direction of u = ⟨3/5, 4/5⟩ is

Duf = u · ∇f =
6

5
− 32

5
= −26

5
.

Example 2. Consider the function f(x, y, z) = xyz2 at the point (1, 2, 1). Then

∇f = ⟨fx, fy, fz⟩ =
⟨
yz2, xz2, 2xyz

⟩
= ⟨2, 1, 4⟩

gives the direction of most rapid increase and the corresponding rate of change is

||∇f || =
√
22 + 12 + 42 =

√
21.

To find the rate of change in the direction of v = ⟨2, 1, 2⟩, we note that

||v|| =
√
22 + 12 + 22 =

√
9 = 3,

so v is not a unit vector. Since w = 1
3
v = ⟨2/3, 1/3, 2/3⟩ is a unit vector, we get

Dvf = Dwf = w · ∇f =
4

3
+

1

3
+

8

3
=

13

3
.



Lecture 9, October 12

• Tangent plane. To find the tangent plane of a surface at a given point, one needs to
find its normal vector n. When z = f(x, y) is given in terms of x and y, we have

n = ⟨fx(x0, y0), fy(x0, y0),−1⟩ .

When z is given implicitly in terms of a relation F (x, y, z) = 0, we have

n = ⟨Fx(x0, y0, z0), Fy(x0, y0, z0), Fz(x0, y0, z0)⟩ .

In either case, the normal line to the surface is the line whose direction is n.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Consider the function z = (x2 + 3y)2 at the point (1, 2). In this case,

n =
⟨
2(x2 + 3y) · 2x, 2(x2 + 3y) · 3,−1

⟩
= ⟨28, 42,−1⟩

and the tangent plane passes through (1, 2, 49), so its equation is

28(x− 1) + 42(y − 2)− (z − 49) = 0 =⇒ 28x+ 42y − z = 63.

The normal line passes through the same point with direction n, so it is given by

x = 1 + 28t, y = 2 + 42t, z = 49− t.

Example 2. Consider the sphere x2 + y2 + z2 = 9 at the point (2, 1, 2). Then

F (x, y, z) = x2 + y2 + z2 − 9 = 0

and the normal vector to the tangent plane is

n = ⟨Fx, Fy, Fz⟩ = ⟨2x, 2y, 2z⟩ = ⟨4, 2, 4⟩ .

Since the tangent plane passes through (2, 1, 2), its equation is

4(x− 2) + 2(y − 1) + 4(z − 2) = 0 =⇒ 2x+ y + 2z = 9.



Lecture 10, October 15

• Critical points. Suppose (x0, y0) is a critical point of f(x, y) in the sense that

fx(x0, y0) = fy(x0, y0) = 0.

To determine the behaviour of f at that point, one looks at the expression

D = fxx(x0, y0)fyy(x0, y0)− fxy(x0, y0)
2.

(a) If D > 0 and fxx(x0, y0) > 0, then f has a local minimum at (x0, y0).

(b) If D > 0 and fxx(x0, y0) < 0, then f has a local maximum at (x0, y0).

(c) If D < 0, then f has a saddle point at (x0, y0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Let f(x, y) = x2 − xy + y2 − 2x− 2y. Then the critical points satisfy

0 = fx(x, y) = 2x− y − 2, 0 = fy(x, y) = −x+ 2y − 2.

We multiply the first equation by 2 and then add it to the second equation to get

0 = 3x− 6 =⇒ x = 2 =⇒ y = 2x− 2 = 2.

This shows that (2, 2) is the only critical point, while

D = fxxfyy − f 2
xy = 2 · 2− (−1)2 = 3.

Since D > 0 and fxx = 2 > 0, the critical point (2, 2) is a local minimum.

Example 2. Let f(x, y) = 3xy − x3 − y3. To find the critical points, we solve

0 = fx(x, y) = 3y − 3x2, 0 = fy(x, y) = 3x− 3y2.

These equations give y = x2 and also x = y2, so we easily get

x = y2 = x4 =⇒ x4 − x = 0 =⇒ x = 0, 1.

Since y = x2, the only critical points are (0, 0) and (1, 1), while

D = fxxfyy − f 2
xy = (−6x)(−6y)− 32 = 36xy − 9.

At the critical point (0, 0), we have D = −9 and we get a saddle point. At the critical
point (1, 1), we have D > 0 and fxx = −6x < 0, so we get a local maximum.



Lecture 11, October 17

• Double integrals. The double integral of f(x, y) over a region R in the xy-plane is
defined in terms of Riemann sums as∫∫

R

f(x, y) dA = lim
n→∞

n∑
k=1

f(x∗
k, y

∗
k)∆Ak.

If f is positive, then this expression gives the volume of the solid that lies below the
graph of f and above the region R in the xy-plane. When R = [a, b]× [c, d], one has∫∫

R

f(x, y) dA =

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) dy dx.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Consider f(x, y) = x2y over the rectangle R = [0, 2]× [0, 1]. Then∫∫
R

f(x, y) dA =

∫ 1

0

∫ 2

0

x2y dx dy

and we can focus on the inner integral first. Integrating with respect to x, we get∫ 2

0

x2y dx = y

∫ 2

0

x2 dx = y

[
x3

3

]2
x=0

=
8y

3

and so the double integral is∫∫
R

f(x, y) dA =

∫ 1

0

8y

3
dy =

[
4y2

3

]1
y=0

=
4

3
.

Alternatively, one may reach the same answer by writing∫∫
R

f(x, y) dA =

∫ 2

0

∫ 1

0

x2y dy dx

and by integrating with respect to y first. This approach gives∫ 1

0

x2y dy = x2

∫ 1

0

y dy = x2

[
y2

2

]1
y=0

=
x2

2

for the inner integral, so the double integral is equal to∫∫
R

f(x, y) dA =

∫ 2

0

x2

2
dx =

[
x3

6

]2
x=0

=
4

3
.



Lecture 12, October 19

• Fubini’s theorem. If f is continuous over a bounded region R, then
∫∫

R

f(x, y) dA =

∫ ∫

f(x, y) dy dx =

∫ ∫

f(x, y) dx dy

for some suitable limits of integration that describe the region R. When it comes to
the middle integral, one needs to find the possible values of y for each fixed value of x
and that corresponds to a description of R using vertical slices. When it comes to the
rightmost integral, one uses horizontal slices, instead.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Switching the order of integration, one finds that

∫ 1

0

∫ 1

x

ey
2

dy dx =

∫ 1

0

∫ y

0

ey
2

dx dy =

∫ 1

0

yey
2

dy =

[

ey
2

2

]1

0

=
e− 1

2
.

Example 2. We switch the order of integration in order to compute the integral

I =

∫ 4

0

∫ 2

y/2

cos(2y/x)

x
dx dy =

∫ 2

0

∫ 2x

0

cos(2y/x)

x
dy dx.

In this case, the inner integral is given by

1

x

∫ 2x

0

cos(2y/x) dy =
1

x

[

x sin(2y/x)

2

]y=2x

y=0

=
sin 4

2

and so the double integral is equal to

I =

∫ 2

0

∫ 2x

0

cos(2y/x)

x
dy dx =

∫ 2

0

sin 4

2
dx = sin 4.

1

1

y = x

2

4

y = 2x

Figure: The regions of integration for Examples 1 and 2.



Lecture 13, October 22

• Polar coordinates. Expressing a double integral in polar coordinates, one has
∫∫

R

f(x, y) dA =

∫ ∫

f(r cos θ, r sin θ) · rdr dθ

for some suitable limits of integration that describe the region R.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. If R is the region depicted on the left side of the figure, then
∫∫

R

(x2 + y2) dA =

∫ 1

0

∫

√
1−x2

0

(x2 + y2) dy dx.

Expressing this integral in polar coordinates, one can also write it as
∫∫

R

(x2 + y2) dA =

∫ π/2

0

∫ 1

0

r3 dr dθ.

Example 2. We use polar coordinates in order to compute the integral

I =

∫

√
2

0

∫

√
4−y2

y

√

x2 + y2 dx dy.

In this case, the region of integration is bounded by the line x = y on the left and by
the circle x =

√

4− y2 on the right. Note that these two intersect when

y =
√

4− y2 =⇒ y2 = 4− y2 =⇒ 2y2 = 4 =⇒ y2 = 2.

This explains the upper limit of integration y =
√
2. The region of integration is thus

the one depicted on the right and we can describe it using polar coordinates to get

I =

∫ π/4

0

∫ 2

0

r · r dr dθ =

∫ π/4

0

[

r3

3

]2

0

dθ =

∫ π/4

0

8

3
dθ =

2π

3
.

1

1

x2 + y2 = 1

�

�

�

�

2

√
2

y = x

x2 + y2 = 4

��

Figure: The regions of integration for Examples 1 and 2.



Lecture 14, October 24

• Parametric surfaces. A surface in R3 can be described using a vector equation

r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩ .

Its normal vector is given by the cross product ru × rv, while the area of the surface
which lies above the region R in the uv-plane is

Surface area =

∫∫
R

||ru × rv|| dA.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. The parametric equation of the cone z =
√

x2 + y2 is given by

r = ⟨x, y, z⟩ =
⟨
x, y,

√
x2 + y2

⟩
= ⟨r cos θ, r sin θ, r⟩ .

Example 2. We compute the area of the part of the cylinder x2 + y2 = 1 which lies
between the planes z = 0 and z = 3. Its parametric equation is

r = ⟨cos θ, sin θ, z⟩ , 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 3.

Since the normal vector is given by

rθ × rz = ⟨− sin θ, cos θ, 0⟩ × ⟨0, 0, 1⟩ = ⟨cos θ, sin θ, 0⟩ ,

its length is equal to 1 and so the area of the cylinder is∫ 2π

0

∫ 3

0

||rθ × rz|| dz dθ =

∫ 2π

0

∫ 3

0

dz dθ =

∫ 2π

0

3 dθ = 6π.

Example 3. We compute the area of the part of the cone z =
√

x2 + y2 which lies
inside the cylinder x2 + y2 = 4. Its parametric equation is

r = ⟨x, y, z⟩ = ⟨r cos θ, r sin θ, r⟩ , 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2.

To find its area, we first compute the normal vector

rr × rθ = ⟨cos θ, sin θ, 1⟩ × ⟨−r sin θ, r cos θ, 0⟩ = ⟨−r cos θ,−r sin θ, r⟩ .

This gives ||rr × rθ|| =
√
2r2 = r

√
2, so the area of the cone is∫ 2π

0

∫ 2

0

||rr × rθ|| dr dθ =

∫ 2π

0

∫ 2

0

r
√
2 dr dθ =

∫ 2π

0

2
√
2 dθ = 4π

√
2.



Lecture 15, October 26

• Laminas. If a lamina R has density function δ(x, y), then its mass is given by

M =

∫∫
R

δ(x, y) dA,

while its center of gravity is the point (x0, y0) whose coordinates are

x0 =
1

M

∫∫
R

xδ(x, y) dA, y0 =
1

M

∫∫
R

yδ(x, y) dA.

For laminas of constant density, the center of gravity is also known as the centroid.

• Triple integrals. Suppose that G is a solid which is bounded above by z = g(x, y)
and below by z = h(x, y). If its projection onto the xy-plane is the region R, then

Volume of G =

∫∫∫
G

dV =

∫∫
R

[g(x, y)− h(x, y)] dA.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. The lamina R inside the unit circle with δ(x, y) = x2 + y2 has mass

M =

∫∫
R

(x2 + y2) dA =

∫ 2π

0

∫ 1

0

r3 dr dθ =

∫ 2π

0

1

4
dθ =

π

2
.

Its center of gravity (x0, y0) should be the origin by symmetry. In fact, we have

x0 =
2

π

∫∫
R

x(x2 + y2) dA =
2

π

∫ 2π

0

∫ 1

0

r4 cos θ dr dθ =
2

π

∫ 2π

0

cos θ

5
dθ = 0

and a similar computation gives y0 = 0 as well.

Example 2. Let G be the solid which is bounded by z = x2 + y2 from below and by
the plane z = 1 from above. Its projection R onto the xy-plane is x2 + y2 = 1, so

Volume of G =

∫∫
R

(1− x2 − y2) dA =

∫ 2π

0

∫ 1

0

(1− r2) · r dr dθ

=

∫ 2π

0

∫ 1

0

(r − r3) dr dθ =

∫ 2π

0

(
1

2
− 1

4

)
dθ =

π

2
.



Lecture 16, October 31

• Triple integrals in cylindrical coordinates. One has the formulas

x = r cos θ, y = r sin θ, x2 + y2 = r2, dV = r dz dr dθ.

• Triple integrals in spherical coordinates. One has the formulas

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ, dV = ρ2 sinϕ dρ dϕ dθ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Consider the solid G which is bounded by the cone z =
√
x2 + y2 from

below and by the sphere x2 + y2 + z2 = 8 from above. To find its projection R onto
the xy-plane, we find the points at which the cone meets the sphere, namely

x2 + y2 + z2 = 8 =⇒ x2 + y2 + (x2 + y2) = 8 =⇒ x2 + y2 = 4.

This gives a circle of radius 2 in the xy-plane, so the volume of G is

Volume =

∫∫∫
G

dV =

∫ 2

−2

∫ √
4−x2

−
√
4−x2

∫ √
8−x2−y2

√
x2+y2

dz dy dx.

In terms of cylindrical coordinates, the circle x2 + y2 = 4 becomes r2 = 4 and so

Volume =

∫ 2π

0

∫ 2

0

∫ √
8−r2

r

r dz dr dθ.

In terms of spherical coordinates, finally, the equation of the cone is

z =
√

x2 + y2 = r =⇒ tanϕ =
r

z
= 1 =⇒ ϕ = π/4

and we can compute the volume of the solid as

Volume =

∫ 2π

0

∫ π/4

0

∫ √
8

0

ρ2 sinϕ dρ dϕ dθ =

∫ 2π

0

∫ π/4

0

[
ρ3 sinϕ

3

]√8

ρ=0

dϕ dθ

=

∫ 2π

0

∫ π/4

0

16
√
2

3
sinϕ dϕ dθ =

∫ 2π

0

[
−16

√
2

3
cosϕ

]π/4
ϕ=0

dθ

=

∫ 2π

0

16
√
2

3

(
1−

√
2

2

)
dθ =

32π

3
· (
√
2− 1).



Lecture 17, November 2

• Formula for change of variables. When it comes to double integrals, one has∫∫
f(x, y) dx dy =

∫∫
f(x(u, v), y(u, v)) ·

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
Here, the additional factor inside the integral is the absolute value of the Jacobian

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Consider the region R in the xy-plane bounded by the lines

x+ y = 1, x+ y = 2, x− y = 0, x− y = 1.

If we introduce the variables u = x− y and v = x+ y, then we can write∫∫
R

x− y

x+ y
dx dy =

∫ 2

1

∫ 1

0

u

v
·
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
To compute the Jacobian in this case, we first need to solve for x and y, namely{

u = x− y
v = x+ y

}
=⇒

{
u+ v = 2x
v − u = 2y

}
=⇒

{
x = (u+ v)/2
y = (v − u)/2

}
.

This allows us to differentiate x, y with respect to u, v and we now get

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

1

2

1

2

−1

2

1

2

∣∣∣∣∣∣∣ =
1

4
+

1

4
=

1

2
.

Keeping this in mind, we can finally compute the given integral as∫∫
R

x− y

x+ y
dx dy =

∫ 2

1

∫ 1

0

u

2v
du dv

=

∫ 2

1

[
u2

4v

]1
u=0

dv =

∫ 2

1

1

4v
dv =

[
ln v

4

]2
1

=
ln 2

4
.



Lecture 18, November 12

• Divergence. The divergence of the vector field F = 〈F1, F2, F3〉 is defined by

divF =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

• Curl. The curl of the vector field F = 〈F1, F2, F3〉 is defined by

curlF =

(

∂F3

∂y
− ∂F2

∂z

)

i+

(

∂F1

∂z
− ∂F3

∂x

)

j +

(

∂F2

∂x
− ∂F1

∂y

)

k.

Note that the six terms on the right hand side are the six diagonals in the diagram

i j k i j

∂

∂x

∂

∂y

∂

∂z

∂

∂x

∂

∂y

F1 F2 F3 F1 F2

with a plus sign for the diagonals going southeast and a minus sign for the others.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. The divergence of F (x, y, z) = xyi+ xzj + yzk is given by

divF = (xy)x + (xz)y + (yz)z = y + 0 + y = 2y,

while the curl of F is given by

curlF = (yz)yi+ (xy)zj + (xz)xk − (xy)yk − (xz)zi− (yz)xj

= zi+ zk − xk − xi

= (z − x)i+ (z − x)k.

Example 2. Let r(x, y, z) = xi+ yj + zk be the position vector. Then we have

div r =
∂x

∂x
+

∂y

∂y
+

∂z

∂z
= 1 + 1 + 1 = 3

and the curl is the zero vector because

curl r = zyi+ xzj + yxk − xyk − yzi− zxj = 0.



Lecture 19, November 14

• Line integrals. The integral of f(x, y) over a curve C in the xy-plane is∫
C

f(x, y) ds =

∫ b

a

f(x(t), y(t)) · ||r′(t)|| dt,

where r(t) = ⟨x(t), y(t)⟩ is the equation of the curve and a ≤ t ≤ b. The integrals∫
C

f(x, y) dx,

∫
C

f(x, y) dy,

∫
C

F · dr

are defined similarly in terms of dx = x′(t) dt, dy = y′(t) dt and dr = r′(t) dt.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Take f(x, y) = xy2 and let C be the line from (0, 0) to (1, 2). Then

r(t) = ⟨t, 2t⟩ =⇒ r′(t) = ⟨1, 2⟩ =⇒ ||r′(t)|| =
√
5

and we have 0 ≤ t ≤ 1. Since x = t and y = 2t throughout the curve, we find that∫
C

xy2 ds =

∫ 1

0

t(2t)2 ·
√
5 dt = 4

√
5

∫ 1

0

t3 dt =
√
5.

Example 2. Take f(x, y) = x and let C be the part of the unit circle that lies in the
first quadrant. Then we have r(t) = ⟨cos t, sin t⟩ with 0 ≤ t ≤ π/2 and so

r′(t) = ⟨− sin t, cos t⟩ =⇒ ||r′(t)|| =
√

sin2 t+ cos2 t = 1.

Since x = cos t by above, we conclude that∫
C

x ds =

∫ π/2

0

cos t dt = sin(π/2)− sin 0 = 1.

Example 3. Take F (x, y) = ⟨y, x⟩ and let C be as in the previous example. Then

r(t) = ⟨cos t, sin t⟩ =⇒ dr = ⟨− sin t, cos t⟩ dt

and also F = ⟨y, x⟩ = ⟨sin t, cos t⟩ throughout the curve, so we get∫
C

F · dr =

∫ π/2

0

(
− sin2 t+ cos2 t

)
dt =

∫ π/2

0

cos(2t) dt =

[
sin(2t)

2

]π/2
0

= 0.



Lecture 20, November 16

• Conservative vector fields. We say that F = ⟨F1, F2⟩ is conservative, if

∂F1

∂y
=

∂F2

∂x
.

In that case, F = ∇ϕ = ⟨ϕx, ϕy⟩ for some function ϕ (the potential function) and∫
C

F · dr =

∫
C

∇ϕ · dr = ϕ(x1, y1)− ϕ(x0, y0)

for any curve C from (x0, y0) to (x1, y1). Thus, the integral is path-independent.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Take F = ⟨2xy, x2 + 2y⟩. This vector field is conservative because

∂F1

∂y
= (2xy)y = 2x,

∂F2

∂x
= (x2 + 2y)x = 2x.

In particular, F = ∇ϕ = ⟨ϕx, ϕy⟩ for some function ϕ and this means that

ϕx = 2xy, ϕy = x2 + 2y.

To actually find the potential function ϕ, we note that integration gives

ϕ =

∫
2xy dx = x2y + C1(y),

ϕ =

∫
(x2 + 2y) dy = x2y + y2 + C2(x)

and then compare these two equations to get the potential function ϕ = x2y + y2.

Example 2. Let F = ⟨2xy, x2 + 2y⟩ as before and consider the line integral∫
C

F · dr,

where C is the straight line from (1, 0) to (0, 1). Then we have∫
C

F · dr =

∫ (0,1)

(1,0)

∇ϕ · dr = ϕ(0, 1)− ϕ(1, 0) = 1.



Lecture 21, November 21

• Green’s theorem. If R is a simply connected region in R2 whose boundary C is a
simple, closed piecewise smooth curve oriented counterclockwise, then

ffi
C

F1 dx+ F2 dy =

¨
R

(
∂F2

∂x
− ∂F1

∂y

)
dA.

In particular, the area of the region R may be computed using any of the formulas

Area =

ffi
C

x dy = −
ffi
C

y dx =
1

2

ffi
C

x dy − y dx.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Consider the triangle C whose vertices are (0, 0), (1, 0) and (1, 2). Then

ffi
C

xy dx+ x2y3 dy =

¨
R

(2xy3 − x) dA,

where R is the interior of the triangle. This actually gives

ffi
C

xy dx+ x2y3 dy =

ˆ 1

0

ˆ 2x

0

(2xy3 − x) dy dx =

ˆ 1

0

[
2xy4

4
− xy

]2x
y=0

dx

=

ˆ 1

0

(8x5 − 2x2) dx =
8

6
− 2

3
=

2

3
.

Example 2. Let C be the circle of radius 2 around the origin and let

F (x, y) =
⟨
ex − y3, cos y + x3

⟩
.

According to Green’s theorem, we then have

ffi
C

F · dr =

¨
R

(3x2 + 3y2) dA,

where R is the interior of the circle. Switching to polar coordinates, we find that

ffi
C

F · dr =

ˆ 2π

0

ˆ 2

0

3r3 dr dθ

=

ˆ 2π

0

[
3r4

4

]2
r=0

dθ =

ˆ 2π

0

12 dθ = 24π.



Lecture 22, November 23

• Surface integrals. The integral of f(x, y, z) over a surface σ in R3 is∫∫
σ

f(x, y, z) dS =

∫∫
f(x(u, v), y(u, v), z(u, v)) · ||ru × rv|| du dv,

where r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩ is the parametric equation of the surface.

• When the surface is the graph of z = f(x, y), one has dS =
√
1 + f 2

x + f 2
y dx dy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1 (Cylinder). The parametric equation of the cylinder x2 + y2 = 1 is

r = ⟨x, y, z⟩ = ⟨cos θ, sin θ, z⟩

and it is obtained using cylindrical coordinates. In this case, we have

rθ × rz = ⟨− sin θ, cos θ, 0⟩ × ⟨0, 0, 1⟩ = ⟨cos θ, sin θ, 0⟩ ,

||rθ × rz|| =
√

cos2 θ + sin2 θ = 1

and one can use these facts to compute any surface integral over the cylinder.

Example 2 (Cone). The parametric equation of the cone z =
√

x2 + y2 is

x2 + y2 = z2 =⇒ r = ⟨x, y, z⟩ = ⟨z cos θ, z sin θ, z⟩ .

To compute a surface integral over the cone, one needs to compute

rθ × rz = ⟨−z sin θ, z cos θ, 0⟩ × ⟨cos θ, sin θ, 1⟩ = ⟨z cos θ, z sin θ,−z⟩ ,

||rθ × rz|| =
√

z2 cos2 θ + z2 sin2 θ + z2 = z
√
2.

Example 3 (Sphere). The parametric equation of the sphere x2 + y2 + z2 = 1 is

r = ⟨x, y, z⟩ = ⟨cos θ sinϕ, sin θ sinϕ, cosϕ⟩

and it is obtained using spherical coordinates. In this case, we have

rθ × rϕ = ⟨− sin θ sinϕ, cos θ sinϕ, 0⟩ × ⟨cos θ cosϕ, sin θ cosϕ,− sinϕ⟩
=
⟨
− cos θ sin2 ϕ,− sin θ sin2 ϕ,− sinϕ cosϕ

⟩
= −(sinϕ)r

and the fact that ||r|| = 1 implies that ||rθ × rϕ|| = sinϕ.



Example 4 (A general example). The graph of z = f(x, y) can be described by

r = ⟨x, y, z⟩ = ⟨x, y, f(x, y)⟩ .

To compute a surface integral over this graph, one needs to compute

rx × ry = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ ,

||rx × ry|| =
√

1 + f 2
x + f 2

y .

Example 5. We compute the integral
∫∫

σ
z2 dS in the case that σ is the part of the

cone z =
√
x2 + y2 that lies between z = 0 and z = 1. As in Example 2, we have

r = ⟨z cos θ, z sin θ, z⟩ , ||rθ × rz|| = z
√
2.

This implies dS = z
√
2 dz dθ, so the given integral becomes∫∫

σ

z2 dS =

∫ 2π

0

∫ 1

0

z3
√
2 dz dθ =

∫ 2π

0

√
2

4
dθ =

π
√
2

2
.

Example 6. Consider the lamina that occupies the part of the paraboloid z = x2+ y2

that lies below the plane z = 1. If its density is given by δ(x, y, z), then its mass is

Mass =

∫∫
σ

δ(x, y, z) dS.

Assume that δ is constant for simplicity. Since z = f(x, y) = x2 + y2, we have

||rx × ry|| =
√
1 + f 2

x + f 2
y =

√
1 + 4x2 + 4y2

by Example 4. Using this fact and switching to polar coordinates, we find that

Mass =

∫ ∫
δ
√
1 + 4x2 + 4y2 dx dy

= δ

∫ 2π

0

∫ 1

0

(1 + 4r2)1/2 r dr dθ

=
δ

8

∫ 2π

0

∫ 5

1

u1/2 du dθ u = 1 + 4r2

=
δ

8

∫ 2π

0

53/2 − 13/2

3/2
dθ

=
δπ

6
(5
√
5− 1).



Lecture 23, November 26

• Flux. The flux of the vector field F (x, y, z) through a surface σ in R3 is

Flux =

∫∫
σ

F · n dS,

where n is the unit normal vector depending on the orientation of the surface. If σ is
the graph of z = f(x, y) oriented upwards, then n dS = ⟨−fx,−fy, 1⟩ dx dy.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Let F = ⟨x, y, z⟩ and let σ be the part of the paraboloid z = 1− x2 − y2

that lies above the xy-plane, oriented upwards. In this case, we have

f(x, y) = 1− x2 − y2 =⇒ n dS = ⟨2x, 2y, 1⟩ dx dy.

Taking the dot product with F = ⟨x, y, 1− x2 − y2⟩, we end up with

Flux =

∫∫
(2x2 + 2y2 + 1− x2 − y2) dx dy

=

∫∫
(x2 + y2 + 1) dx dy

and the projection of σ onto the xy-plane is the interior of the circle x2 + y2 = 1, so

Flux =

∫ 2π

0

∫ 1

0

(r2 + 1) · r dr dθ =

∫ 2π

0

∫ 1

0

(r3 + r) dr dθ

=

∫ 2π

0

[
r4

4
+

r2

2

]1
r=0

dθ =

∫ 2π

0

3

4
dθ =

3π

2
.

Example 2. Let F = ⟨1, y, 0⟩ and let σ be the part of the plane x + y + z = 1 that
lies in the first octant, oriented upwards. Then z = f(x, y) = 1− x− y and

n dS = ⟨−fx,−fy, 1⟩ dx dy = ⟨1, 1, 1⟩ dx dy.

Taking the dot product with F = ⟨1, y, 0⟩, we conclude that

Flux =

∫∫
(1 + y) dx dy =

∫ 1

0

∫ 1−y

0

(1 + y) dx dy

=

∫ 1

0

(1 + y)(1− y) dy =

∫ 1

0

(1− y2) dy = 1− 1

3
=

2

3
.



Lecture 24, November 28

• Divergence theorem. The outward flux of F through a closed surface σ in R3 is∫∫
σ

F · n dS =

∫∫∫
G

(divF ) dV,

where n is the outward unit normal vector and G is the solid enclosed by σ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Let F = ⟨2x, 3y, z2⟩ and let σ be the surface consisting of the six faces
of the unit cube. Then the outward flux of F through σ is given by∫∫

σ

F · n dS =

∫∫∫
G

(2 + 3 + 2z) dV =

∫ 1

0

∫ 1

0

∫ 1

0

(5 + 2z) dx dy dz

=

∫ 1

0

∫ 1

0

(5 + 2z) dy dz =

∫ 1

0

(5 + 2z) dz = 5 + 1 = 6.

Example 2. Let F = ⟨x3, y3, z2⟩ and let σ be the surface of the cylinder x2 + y2 = 4
between the planes z = 0 and z = 1 (including the top and bottom parts). Then the
outward flux through this surface may be computed as∫∫

σ

F · n dS =

∫∫∫
G

(3x2 + 3y2 + 2z) dV =

∫ 1

0

∫ 2π

0

∫ 2

0

(3r3 + 2rz) dr dθ dz

=

∫ 1

0

∫ 2π

0

[
3r4

4
+ r2z

]2
r=0

dθ dz =

∫ 1

0

∫ 2π

0

(12 + 4z) dθ dz

=

∫ 1

0

2π(12 + 4z) dz = 2π(12 + 2) = 28π.

Example 3. Let F = ⟨y, x, z⟩ and let σ be the sphere x2 + y2 + z2 = a2 of radius a
around the origin. Then the outward flux through σ is given by∫∫

σ

F · n dS =

∫∫∫
G

(0 + 0 + 1) dV =

∫∫∫
G

dV = volume of G =
4πa3

3
.



Lecture 25, November 30

• Stokes’ theorem. If σ is an oriented surface that is bounded by the curve C and C
is positively oriented (according to the right hand rule), then∫

C

F · dr =

∫∫
σ

(curlF ) · n dS.

And if σ is the graph of z = f(x, y) oriented upwards, then n dS = ⟨−fx,−fy, 1⟩ dx dy.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. Let F = ⟨z, x, y⟩ and let σ be the part of the paraboloid z = 1− x2 − y2

that lies above the xy-plane, oriented upwards. In this case, we have

z = f(x, y) = 1− x2 − y2 =⇒ n dS = ⟨2x, 2y, 1⟩ dx dy

and one can easily check that

curlF =

(
∂F3

∂y
− ∂F2

∂z

)
i+

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k = ⟨1, 1, 1⟩ .

Taking the dot product of these two vectors, we conclude that∫
C

F · dr =

∫∫
σ

(2x+ 2y + 1) dx dy =

∫ 2π

0

∫ 1

0

(2r2 cos θ + 2r2 sin θ + r) dr dθ

=

∫ 2π

0

(
2 cos θ

3
+

2 sin θ

3
+

1

2

)
dθ =

[
2 sin θ

3
− 2 cos θ

3
+

θ

2

]2π
0

= π.

Example 2. Let F = ⟨z, x, y⟩ and let σ be the part of the plane x+ 2y + z = 4 that
lies in the first octant, oriented upwards. Arguing as before, we get

z = f(x, y) = 4− x− 2y =⇒ n dS = ⟨1, 2, 1⟩ dx dy

as well as curlF = ⟨1, 1, 1⟩, so Stokes’ theorem implies that∫
C

F · dr =

∫∫
σ

(1 + 2 + 1) dx dy = 4

∫∫
σ

dx dy.

The values of x, y are determined by the projection onto the xy-plane. This is formed
by the line x+ 2y = 4 (that we get when z = 0) and the coordinate axes, hence∫

C

F · dr = 4

∫ 2

0

∫ 4−2y

0

dx dy = 4

∫ 2

0

(4− 2y) dy

= 4
[
4y − y2

]2
0
= 16.



Lecture 26, December 3

• Laplace transform. Given a function f(t), we define L (f) by the formula

L (f) =

∫ ∞

0

e−stf(t) dt, s > 0.

Some of the properties of the Laplace transform are listed in the following table.

Function Laplace transform
1 1/s
ekt 1/(s− k)
f ′(t) sL (f)− f(0)

In addition, L (f + g) = L (f) + L (g) and L (cf) = cL (f) for each constant c.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. The Laplace transform of the function y(t) = 2et + 3e2t is given by

L (y) = 2L (et) + 3L (e2t) =
2

s− 1
+

3

s− 2
=

5s− 7

(s− 1)(s− 2)
.

Example 2. We use the Laplace transform to solve y′(t) = y(t) subject to y(0) = y0.
Taking the Laplace transform of both sides, we find that

L (y′) = L (y) =⇒ sL (y)− y0 = L (y).

Next, we solve for L (y) and consult the table to conclude that

(s− 1)L (y) = y0 =⇒ L (y) =
y0

s− 1
=⇒ y(t) = y0e

t.

Example 3. We use the Laplace transform to solve y′(t) − 2y(t) = 4 subject to the
initial condition y(0) = 1. Taking the Laplace transform of both sides gives

L (y′)− 2L (y) = L (4) =⇒ sL (y)− y(0)− 2L (y) =
4

s

=⇒ (s− 2)L (y) = y(0) +
4

s
= 1 +

4

s
.

To use the table in this case, one needs to employ partial fractions to write

L (y) =
1

s− 2
+

4

s(s− 2)
=

1

s− 2
+

2

s− 2
− 2

s
=

3

s− 2
− 2

s

and this is easily seen to imply that y(t) = 3e2t − 2.



Lecture 27, December 5

• Laplace transform. Some of its main properties are listed in the following table.

Function Laplace transform Function Laplace transform
1 1/s ekt 1/(s− k)

y′(t) sL (y)− y(0) sin(kt) k/(s2 + k2)
y′′(t) s2L (y)− sy(0)− y′(0) cos(kt) s/(s2 + k2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. We use the table above to solve the initial value problem

y′′(t) + 4y(t) = 2et, y(0) = 1, y′(0) = 0.

Taking the Laplace transform of both sides gives

s2L (y)− sy(0)− y′(0) + 4L (y) =
2

s− 1

and we can solve for L (y) to find that

(s2 + 4)L (y) = s+
2

s− 1
=⇒ L (y) =

s

s2 + 4
+

2

(s− 1)(s2 + 4)
.

To handle the rightmost term, we have to decompose it into partial fractions as

2

(s− 1)(s2 + 4)
=

A

s− 1
+

Bs+ C

s2 + 4
.

Let us now determine the coefficients A,B,C. Clearing denominators gives

2 = A(s2 + 4) + (Bs+ C)(s− 1)

and this identity should hold for all s. When s = 1, the identity reduces to

2 = 5A =⇒ A = 2/5.

When s = 0, we get 2 = 4A− C and so C = 4A− 2 = −2/5. When s = −1, we get

2 = 5A− 2(C −B) = 2 + 4/5 + 2B =⇒ B = 1− 1− 2/5 = −2/5.

We now employ this partial fractions decomposition to write

L (y) =
s

s2 + 4
+

2/5

s− 1
− 2s/5

s2 + 4
− 2/5

s2 + 4
.

Consulting the table once again, we conclude that

y(t) = cos(2t) +
2et

5
− 2 cos(2t)

5
− sin(2t)

5

=
3 cos(2t)

5
+

2et

5
− sin(2t)

5
.



Lecture 28, December 7

• Laplace transform. Some of its main properties are listed in the following table.

Function Laplace transform Function Laplace transform
f(t) F (s) tn n!/sn+1

ekt 1/(s− k) sin(kt) k/(s2 + k2)
ektf(t) F (s− k) u(t− k)f(t− k) e−ksF (s)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. We compute L (t2e4t). Ignoring the exponential factor, we find that

L (t2) =
2!

s3
=

2

s3
.

If we now include the exponential factor e4t, then s becomes s− 4 and we get

L (t2e4t) =
2

(s− 4)3
.

Example 2. We compute L −1
(

e−2s

s2−5s+6

)
. First, we use partial fractions to write

1

s2 − 5s+ 6
=

1

(s− 3)(s− 2)
=

1

s− 3
− 1

s− 2

and we consult our table to find that

L −1

(
1

s2 − 5s+ 6

)
= L −1

(
1

s− 3

)
− L −1

(
1

s− 2

)
= e3t − e2t.

If we now include the exponential factor e−2s, then t becomes t− 2 and we get

L −1

(
e−2s

s2 − 5s+ 6

)
= u(t− 2) · (e3t−6 − e2t−4).

Example 3. We compute L −1
(

1
s2−4s+5

)
. Since the denominator does not factor, we

cannot use partial fractions in this case. Let us then complete the square to express

1

s2 − 4s+ 5
=

1

s2 − 4s+ 4 + 1
=

1

(s− 2)2 + 1

as a shifted version of 1
s2+1

. According to our table, this implies

L −1

(
1

s2 + 1

)
= sin t =⇒ L −1

(
1

s2 − 4s+ 5

)
= e2t sin t.



Lecture 29, December 10

• Laplace transform. Some of its main properties are listed in the following table.

Function Laplace transform Function Laplace transform
f(t) F (s) tn n!/sn+1

ekt 1/(s− k) sin(kt) k/(s2 + k2)
ektf(t) F (s− k) u(t− k)f(t− k) e−ksF (s)
δ(t− k) e−ks u(t− k) e−ks/s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1. We use the table above to solve the initial value problem

y′′(t) + y(t) = δ(t− 1) + u(t− 2), y(0) = 0, y′(0) = 1.

Taking the Laplace transform of both sides gives

s2L (y)− sy(0)− y′(0) + L (y) = e−s +
e−2s

s

and we can solve for L (y) to find that

(s2 + 1)L (y) = 1 + e−s +
e−2s

s
=⇒ L (y) =

1

s2 + 1
+

e−s

s2 + 1
+

e−2s

s(s2 + 1)
.

To handle the rightmost term, we have to decompose it into partial fractions as

1

s(s2 + 1)
=

A

s
+

Bs+ C

s2 + 1
.

Let us now determine the coefficients A,B,C. Clearing denominators gives

1 = A(s2 + 1) + (Bs+ C)s = As2 + A+Bs2 + Cs

and we may compare coefficients of s to find that

A = 1, C = 0, B = −A = −1.

This gives rise to the partial fractions decomposition

L (y) =
1

s2 + 1
+

e−s

s2 + 1
+

e−2s

s
− se−2s

s2 + 1
.

Consulting the table once again, we conclude that

y(t) = sin t+ u(t− 1) sin(t− 1) + u(t− 2)− u(t− 2) cos(t− 2).


