
Gradient vector

• The gradient of f(x, y, z) is the vector ∇f = ⟨fx, fy, fz⟩. This gives the direction of
most rapid increase at each point and the rate of change in that direction is ||∇f ||.

• The direction of most rapid decrease is given by −∇f and the rate of change in that
direction is −||∇f ||.

Tangent plane and normal line

• The tangent plane to the graph of z = f(x, y) at the point (x0, y0, z0) is the plane

z − f(x0, y0) = fx(x0, y0) · (x− x0) + fy(x0, y0) · (y − y0).

• The normal line to the graph of z = f(x, y) at the point (x0, y0, z0) has direction

n = ⟨fx(x0, y0), fy(x0, y0),−1⟩ .

Flux and surface integrals

• The flux of the vector field F (x, y, z) through a surface σ in R3 is given by

Flux =

¨
σ

F · n dS,

where n is the unit normal vector depending on the orientation of the surface. If σ is
the graph of z = f(x, y) oriented upwards, then n dS = ⟨−fx,−fy, 1⟩ dx dy.

• The surface integral of a function H(x, y, z) over the graph of z = f(x, y) is given by

¨
σ

H(x, y, z) dS =

¨
R

H(x, y, f(x, y)) ·
√

1 + f 2
x + f 2

y dx dy,

where σ denotes the graph of z = f(x, y) and R is its projection onto the xy-plane.

Change of variables

• Cylindrical coordinates. These are defined by the formulas

x = r cos θ, y = r sin θ, x2 + y2 = r2, dV = r dz dr dθ.

• Spherical coordinates. These are defined by the formulas

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ, dV = ρ2 sinϕ dρ dϕ dθ.



• Formula for change of variables. When it comes to double integrals, one has¨
f(x, y) dx dy =

¨
f(x(u, v), y(u, v)) ·

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv.
Here, the additional factor inside the integral is the absolute value of the Jacobian

∂(x, y)

∂(u, v)
=

∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
.

Mass and volume

• A two-dimensional lamina R with density δ(x, y) has mass
˜

R
δ(x, y) dA.

• A three-dimensional solid G with density δ(x, y, z) has mass
˝

G
δ(x, y, z) dV .

• A three-dimensional solid G has volume
˝

G
dV .

• Let G be a solid which is bounded by z = f(x, y) from above and by z = g(x, y) from
below. If its projection onto the xy-plane is the region R, then its volume is

Volume =

˚
G

dV =

¨
R

[f(x, y)− g(x, y)] dA.

Divergence and curl

• The divergence of the vector field F (x, y, z) = ⟨F1, F2, F3⟩ is defined by

divF =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

• The curl of the vector field F (x, y, z) = ⟨F1, F2, F3⟩ is defined by

curlF =

(
∂F3

∂y
− ∂F2

∂z

)
i+

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k.

Line integrals

• The integral of the function f(x, y) over a curve C in the xy-plane is
ˆ
C

f(x, y) ds =

ˆ b

a

f(x(t), y(t)) · ||r′(t)|| dt,

where r(t) = ⟨x(t), y(t)⟩ is the equation of the curve and a ≤ t ≤ b. The integralsˆ
C

f(x, y) dx,

ˆ
C

f(x, y) dy,

ˆ
C

F · dr

are defined similarly in terms of dx = x′(t) dt, dy = y′(t) dt and dr = r′(t) dt.



Conservative vector fields

• We say that the vector field F (x, y) = ⟨F1, F2⟩ is conservative, if ∂F1

∂y
= ∂F2

∂x
.

• Such fields have the form F = ∇ϕ = ⟨ϕx, ϕy⟩ for some potential function ϕ.

• If C is a curve from (x0, y0) to (x1, y1) and F = ∇ϕ = ⟨ϕx, ϕy⟩, thenˆ
C

F · dr = ϕ(x1, y1)− ϕ(x0, y0).

In particular, the line integral of a conservative vector field is path-independent.

Divergence, Green’s and Stokes’ theorems

• Divergence theorem. The outward flux of F through a closed surface σ in R3 is¨
σ

F · n dS =

˚
G

(divF ) dV,

where n is the outward unit normal vector and G is the solid enclosed by σ.

• Green’s theorem. If R is a simply connected region in R2 whose boundary C is a
simple, closed piecewise smooth curve oriented counterclockwise, thenffi

C

F1 dx+ F2 dy =

¨
R

(
∂F2

∂x
− ∂F1

∂y

)
dA.

• Stokes’ theorem. If σ is an oriented surface that is bounded by the curve C and C
is positively oriented (according to the right hand rule), thenˆ

C

F · dr =

¨
σ

(curlF ) · n dS.

And if σ is the graph of z = f(x, y) oriented upwards, then n dS = ⟨−fx,−fy, 1⟩ dx dy.

Laplace transform

• Some of its main properties are listed in the following table.

Function Laplace transform Function Laplace transform
f(t) F (s) 1 1/s
tn n!/sn+1 sin(kt) k/(s2 + k2)
ekt 1/(s− k) cos(kt) s/(s2 + k2)

ektf(t) F (s− k) u(t− k)f(t− k) e−ksF (s)
δ(t− k) e−ks y′(t) sL (y)− y(0)
u(t− k) e−ks/s y′′(t) s2L (y)− sy(0)− y′(0)


