Lecture 3, September 28

• Lines. The line that passes through $A(a_1, a_2, a_3)$ with direction $\boldsymbol{v} = \langle v_1, v_2, v_3 \rangle$ can be described using the parametric equations

 $x = a_1 + tv_1,$ $y = a_2 + tv_2,$ $z = a_3 + tv_3.$

• Vector-valued functions. A vector-valued function is one that has the form

$$\boldsymbol{r}(t) = \langle f(t), g(t), h(t) \rangle$$

Its limits, derivatives and integrals may all be computed component-wise. Its graph is a curve in \mathbb{R}^3 and its derivative $\mathbf{r}'(t)$ is tangent to the curve at each point. If $\mathbf{r}(t)$ is the position of a moving object, then $\mathbf{r}'(t)$ is its velocity and $||\mathbf{r}'(t)||$ is its speed.

• Tangent line. The tangent line to the curve $\mathbf{r}(t)$ at time $t = t_0$ passes through the point $\mathbf{r}(t_0)$ with direction $\mathbf{r}'(t_0)$. One may determine its equation as above.

.....

Example 1. Consider the points A(1, 2, 4) and B(5, 3, 2). To determine the line that passes through these points, we note that the direction of this line is

$$\overrightarrow{AB} = \langle 5 - 1, 3 - 2, 2 - 4 \rangle = \langle 4, 1, -2 \rangle$$

Since the line passes through A(1,2,4) with that direction, its equation is then

$$x = 1 + 4t,$$
 $y = 2 + t,$ $z = 4 - 2t.$

Example 2. Suppose that the position of a moving object is $\mathbf{r}(t) = \langle t^3, 2t^2, 5t \rangle$. Then its velocity vector is $\mathbf{r}'(t) = \langle 3t^2, 4t, 5 \rangle$. To find the tangent line when t = 1, we note that it passes through (1, 2, 5) with direction $\mathbf{r}'(1) = \langle 3, 4, 5 \rangle$, so its equation is

$$x = 1 + 3t$$
, $y = 2 + 4t$, $z = 5 + 5t$.

To compute the object's speed at time t = 1, we note that

$$\mathbf{r}'(1) = \langle 3, 4, 5 \rangle \implies ||\mathbf{r}'(1)|| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$$