Lecture 2, September 26

• Vectors. The vector that points from $A(a_1, a_2, a_3)$ to $B(b_1, b_2, b_3)$ is given by

$$\overrightarrow{AB} = \langle b_1 - a_1, b_2 - a_2, b_3 - a_3 \rangle$$

Vector addition and scalar multiplication are defined component-wise:

$$\overrightarrow{v} + \overrightarrow{w} = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle, \qquad \lambda \overrightarrow{v} = \langle \lambda v_1, \lambda v_2, \lambda v_3 \rangle$$

whenever $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$, $\overrightarrow{w} = \langle w_1, w_2, w_3 \rangle$ and λ is a scalar. Also, the expression

$$||\overrightarrow{v}|| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

gives the length (or norm) of \overrightarrow{v} , while similar formulas hold for vectors in \mathbb{R}^2 .

• Dot product. The dot product of two vectors may be computed in two ways:

$$\overrightarrow{v} \cdot \overrightarrow{w} = v_1 w_1 + v_2 w_2 + v_3 w_3, \qquad \overrightarrow{v} \cdot \overrightarrow{w} = ||\overrightarrow{v}|| \cdot ||\overrightarrow{w}|| \cdot \cos \theta.$$

Here, the two vectors have the same starting point and θ is the angle between them.

• **Parallel/orthogonal.** Two vectors are parallel if and only if they are scalar multiples of one another. Two vectors are orthogonal if and only if their dot product is zero.

.....

Example 1. Consider the triangle with vertices A(1,0,2), B(5,3,4) and C(3,-4,4). To see that the angle at the point A is a right angle, we note that

$$\overrightarrow{AB} = \langle 4, 3, 2 \rangle, \qquad \overrightarrow{AC} = \langle 2, -4, 2 \rangle \implies \overrightarrow{AB} \cdot \overrightarrow{AC} = 8 - 12 + 4 = 0.$$

To determine the angle at the point B, we use the formula

$$\cos B = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{||\overrightarrow{BA}|| \cdot ||\overrightarrow{BC}||} = \frac{\langle -4, -3, -2 \rangle \cdot \langle -2, -7, 0 \rangle}{\sqrt{4^2 + 3^2 + 2^2}\sqrt{2^2 + 7^2}} = \frac{29}{\sqrt{29}\sqrt{53}} = \sqrt{\frac{29}{53}}.$$

Example 2. Consider the points A(1,2,3), B(4,2,1) and C(1,1,1). The vectors

$$\overrightarrow{AB} = \langle 3, 0, -2 \rangle, \qquad \overrightarrow{BC} = \langle -3, -1, 0 \rangle$$

are not parallel, as they are not scalar multiples of one another. This means that they describe different directions, so the three given points are not collinear.