2012 final exam solutions

la. Applying the Laplace transform to both sides gives
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and we can rearrange terms to write this equation as
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Next, we divide by s? + 9 and use partial fractions to find that
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Using this fact and our table of Laplace transforms, we conclude that

y(t) = cos(3t) + 2u(t — 2m) sin(3t — 67) + u(t — ) cos(3t — 37w) — u(t — )
= cos(3t) + 2u(t — 2m) sin(3t) — u(t — 7) cos(3t) — u(t — 7).

1b. The input function refers to the right hand side of the given equation. In this case, it
is 0 when ¢t < 7, it is —9 when m <t # 27 and it is plus infinity when ¢ = 27. As for
the solution we found in part (a), this can be written in the form

cos(3t) ift<m
y(t) = —1 if m<t<2r
2sin(3t) —1 if t>2n

A sketch of the graph of this function appears in the figure below.
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2a.

2b.

2c.

2d.

2e.

3a.

The direction of most rapid increase is given by the gradient V f = (f,, f,, f.), where

1= (22 + 2 —y+2cos(3y — 22)),
’ 2¢/22 +x —y+2cos(3y — 2x)
1 —2sin(3y —2z)-(-2) 1—2sin0-(-2) 1

B 2¢/22 +x —y+2cos(3y — 2x) /1 +3—2+2cos0 4

at the given point, while a similar computation gives f, = —1/4 and f, = —1/2. To
find a unit vector w in the direction of the gradient, we simply divide by its length:

1 1 1 1 1 1 6
VI= <17—1’—§> = IVl=y5r5ti=7
Vf < 1 1 2 >
U=-——=(—,——,——— ).
VAL AV V6 V6
The projection of a vector onto the xz-plane is obtained by ignoring its y-coordinate.
Thus, the projection of u = <1/\/6, —1/\/6, —2/\/6> is <1/\/6, —2/\/6>.

Since u is a unit vector in the direction of most rapid increase, —u is a unit vector in
the direction of most rapid decrease.

The projection of a vector onto the xy-plane is obtained by ignoring its z-coordinate.

Thus, the projection of —u = (—1/v/6,1/v6,2/v6) is (=1/v6,1/6).
The rate of change in the direction of +u is equal to £||V f|| = £1V/6, respectively.
Let us first simplify the given equation and write

2= f(z,y) = %ln(3cos(2x — ) + 627 — 6zy® — ¢ + 31) —1In2.

Differentiating with respect to x, we then find that
1 —3sin(2z —y) - 24 122 — 62

Jo = 3 3cos(2x — y) + 622 — 6zy? — y3 + 31
1 12-24 1
38 2
at the given point, while a similar computation gives f, = —3/2. Noting that

1
zO:fﬂﬂ):§MCk%0+6—24—8+$>—hﬂ
1
=-In2°~-In2=0
50 n ,

we conclude that the equation of the tangent plane at the given point is

_x+3y—7

Z:fx(l,Z)(.T—l)‘ny(laQ)(y_2): 2



3b.

3c.

3d.

3e.
4a.

4b.

The plane intersects the x-axis when y = z = 0, in which case z — 7 = 0. This gives
the point (7,0,0), while the points (0,7/3,0) and (0,0,7/2) can be found similarly.

A graph of the tangent plane appears in the figure below. The point P(1,2,0) lies on
both the zy-plane and the tangent plane, so it lies along the dotted line.
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Write the equation of the tangent plane in the form
2 =—2—-3y+7 = zx+3y+22="T.
The normal line passes through (1,2,0) with direction (1,3,2), so its equation is
r=1+1, y =2+ 3t, z = 2t.
The normal line should be perpendicular to the tangent plane at the given point.

The projection is the region that lies between the graphs of y = x and y = /.

The volume of the solid is the double integral of the function z = f(z,y), namely

1 pVE -z _ o
Volume = / / ‘ sin(rz/2) -y dydzx.
0 T

1—=x

When it comes to the inner integral, one easily finds that
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Using this fact and an integration by parts, we conclude that

1
Volume = / (elﬂ — sin E) 2 dx
. 2/ 2
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Note: This integral was somewhat messy, so I am pretty sure that there was a typo
in the statement of this problem and that the problem was meant to be easier.

4c. This is really a question about L’Hopital’s rule, which is not part of this course:

—e!™* — cos(mx/2) - (7/2)

=1.
r—1 1 — r—1 —1

5a. The given line integral is path-independent because

(6xy — 373 siny), = 6y = (3y* + 27° cos ).
5b. A potential function ¢ is a function that satisfies the equations
be = 3y + 27 cos ¢y = by — 33 siny.
Integrating the first equation with respect to = gives
¢ = /(33/2 + 21® cos x) dx = 3wy* + 273 sinx + C(y),
and we may similarly integrate the second equation to get

o= /(6a:y —3r*siny) dy = 3xy* + 373 cosy + Cy(x).

Thus, one can always take ¢(z,y) = 3xy? + 23 sinx + 373 cos y.

5c¢. According to the fundamental theorem, the value of the integral is

o(m,7/2) — d(—7/2,7) = 37 /4 — (—1373/2) = 2977 /4.



5d. The first line segment is from (—7/2,7) to (7, 7) and its parametric equation is
r(t) = (t,7), —r/2<t<m.

This gives x =t and also y = 7, so we get

I, = / (372 + 273 cost) dt = [37r2t + 2m° sint] o 137% /2.
— —7/2

The second line segment is from (7, 7) to (7, 7/2) and its parametric equation is
r(t) = (m,t), T<t<m/2

because the starting point occurs when ¢ = 7. This gives z = 7w and y = t, so
w/2 nf2
L= / (67t — 377 sint) dt = [37rt2 + 37 cost =317 /4.

In particular, I; + I, = 2973 /4 and this agrees with our answer in part (c).

6a. Cylindrical coordinates are defined by the equations

x =rcosb, y =rsind, z=z.

6b. The surface 2% + y? = a? describes a cylinder of radius a around the z-axis, while the
surface z = a is a plane. The boundary of the solid which belongs to the xy-plane is
the annulus that lies inside the circle 2 + y? = 4 but outside the circle 2% + y? = 1.
To find the volume of the solid using cylindrical coordinates, we note that 1 <r <2
by above and that 0 < z < 3 by assumption, so

Volume—/ //szdrde—/ /37’d7’d9

27 2
:/ ?)Q—)dGZ 27 = 9.
0 2 2

To find the mass of the solid, we proceed similarly to get

2m 2m
Mass—/ //re e Zdzdrd@-/ /re (1—e3)drdf

—(l—e )/O le_;] 6= (1—c ).Te).zw

=(1—-e?? e'n.




