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Each question is worth 18 marks.
1. (a) 14 marks. Solve the following initial value problem by the Laplace transform
'+ 9y =—9u(t —7m)+65(t—2m), y(0)=1, ¢ (0)=0.

(b) 4 marks. Sketch the input function and the solution.

Show the details of your work.

2. Consider the function

fz,y,2) =+/22 +z —y+2cos(3y — 2z), and the point P(3,2,—1).

(a) 10 marks. Find a unit vector in the direction in which f increases most rapidly at
the point P.

(b) 1 mark. Sketch the projection of the vector onto the zz-plane

(c) 3 marks. Find a unit vector in the direction in which f decreases most rapidly at

the point P.
(d) 1 mark. Sketch the projection of the vector onto the zy-plane

(e) 3 marks. Find the rate of change of f at the point P in these directions.

Show the details of your work.
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3. Consider the surface

| Y/3cos(2z — y) + 622 — 6zy? — y° + 31
=In
2

z

(a) 7 marks. Find an equation for the tangent plane to the surface at the point

P(1,2,z9) where zp = f(1,2).

(b) 3 marks. Find points of intersection of the tangent plane with the z-, y- and
2-axes.

(c) 2 marks. Sketch the tangent plane, and show the point P(1,2, 2) on it.

(d) 4 marks. Find parametric equations for the normal line to the surface at the point
P(1,2,2).

(e) 2 marks. Sketch the normal line to the surface at the point P(1,2, 2).

Show the details of your work.

4. Consider the solid in the first octant bounded by the surface

el=® sin 2%
= Yy — Yy
1—z 1—27’

z
below by the plane z = 0, and laterally by y = z and y = /.

(a) 3 marks. Sketch the projection of the solid onto the zy-plane.
(b) 10 marks. Use double integration to find the volume of the solid.

(c) 5 marks. Find

Show the details of your work.
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5. (a) 2 marks. Show that the integral below is independent of the path
(w,7/2)
/ (3y* + 2% cos x) dz — (—6zy + 3 siny) dy .
('_77/2 )77)

(b) 8 marks. Find the potential function ¢(z,y)

(c) 2 marks. Use the Fundamental Theorem of Line Integrals to find the value of the

integral.

(d) Choose the integration path C between the points (—m/2,7) and (7 ,7/2) to be
a curve formed from two line segments C and Cy, where C is joining (—m/2,7)
and (m,7), and Cy is joining (7, 7) and (7, 7/2).

i. 1 mark. Plot the integration path C, and show its orientation on the plot.

ii. 5 marks. Parameterize C; and Cj, and evaluate
/ (3y% + 273 cos ) dz — (—6xy + 3w°siny) dy .
c

Show the details of your work.

6. (a) 3 marks. Express rectangular coordinates in terms of cylindrical coordinates
(b) Consider the solid G bounded by the surfaces z* +3? = 1 and 2® +3* = 4, above
by the surface z = 3, and below by the surface z = 0.
i. 1 mark. What is the surface 22 + ¢% = 17

i. 1 mark. What is the surface 22 + y% = 47

iii. 1 mark. What are the surfaces z =0 and z = 37

iv. 1 mark. Sketch the part of the boundary of the solid G which belongs to the
surface z = 0.

v. 5 marks. Use triple integral and cylindrical coordinates to compute the volume
V of the solid G.

vi. 6 marks. Use triple integral and cylindrical coordinates to find the mass M of
the solid G if its density is

5(27’ Y, Z) — e—(z2+y2+z) )

Show the details of your work.
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Useful Formulae
1. Let r(t) be a vector function with values in R®:  r(¢) = f(¢)i+ g(t)j + h(t) k.

a de _ (4 dg dh)

dat dr 0 dt

Its derivative is o o

t t

b) The magnitude of this vector is || %|| = \/(%)2 + (éﬁ)z + (4&)2_

c) The unit tangent vector is T = —& .

()

(b)

(©) i

(d) The vector equation of the line tangent to the graph of r(t) at the point P =
(o, %0, 20) corresponding to t = to on the curve is R(t) = ro + (t —to) vo , where
ro = r(tg) and vy = %(to) .

(e) The arc length of the graph of r(t) between ¢; and t5 is L = ff ||| dt .

(f) The arc length parameter s having r(to) as its reference point is s = fti) ||| du .

2. Let o be a surface in R?: 2z = f(z,v)

(a) The slope k, of the surface in the z-direction at the point (zo,%0) is kr =

%(xo,yo) .

(b) The slope k, of the surface in the y-direction at the point (o, Yo) is ky =
3—2(370, Yo) -

(c) The equation for the tangent plane to the surface at the point P = (20, Yo, 20) is
z =20+ ko (2 — z0) + ky(y — %) -

(d) Parametric equations for the normal line to the surface at P = (%0, Yo, 20) are
r(t) = ro +t(—kel — kyj + k), 1o =0l + yoj + 20k.

(e) The volume under the surface and over a region R in the zy-plane is
V= [[p fz,y)dA.

(f) The area of the portion of the surface that is above a region R in the zy-plane is
S=[f dS=[[, \/1 £ (%) + () aa.

(g) The mass of the lamina with the density d(z, y, z) that is the portion of the surface

that is above a region R in the zy-plane is

M= [[ 6(z,y,2)dS = [[,(z,y,2) \/1+ (%)2—# (%)2dA.
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3. The local linear approximation of the function z = f(z,y) at the point (zq,%0) is
L(z,y) = f(w0,Yo0) + fo(To: Yo)(x — o) + fy (w0, %0) (¥ — ¥o) -
4. Let f(z,y, z) be a function of three variables

(2) The gradient of fis Vf = (fz, fu, f2) -

(b) f increases most rapidly in the direction of its gradient, and the rate of change of

[ in this direction is equal to ||V f||.

(c) If f is smooth then its critical points satisfy f, = f, = f. = 0.

5. Let R be a region in the zy-plane bounded by the curves y = g(z), y = h(z), = =
a, z =", and g < h for a <z < b. Then the double integral over the region is

[[s flz,y)dA = f [fh(x flz, y)dy] dz .
6. Let R be a region in the zy-plane bounded by the curves (in polar coordinates)

r=r(0), r=ry0), d =, 8§ =pFand r <ryfora <0< B Then the double

integral over the region is
Jf £r,0)dA = [fy, F(r,0)rdrds = [ [0 f(r, 0)rdr| db.

7. Let R be a plain lamina with density 6(z,y).

(a) Its mass is equal to M = [, 6(z,y)dA.
(b) The z-coordinate of its centre of gravity is equal to 2.y = 17 [fz 2 d(z,y) dA.

(c) The y-coordinate of its centre of gravity is equal to Yo, = 75 [ ¥ 0(z,y) dA.

8. Let G be a simple solid whose projection onto the zy-plane is a region R. G is bounded

by a surface z = g(z,y) from below and by a surface z = h(z,y) from above.

(a) The triple integral over the solidis [, f(z,y,2)dV = [[, [fh(x’y) f(z,y, 2 )dzjl dA.

g(z,y)

(b) The volume of the solid is V = [[[, dV = [[, [h(z,y) — 9(z,y)] dA.

9. Let G be a solid enclosed between the two surfaces (in spherical coordinates)

=g(0,¢), T:h(ead))
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(a) The triple integral over the solid is

[l £,0,0) v = [ (I (S 5 r,6,8)rdr | sin g dg) do.
(b) The volume of the solid is V = [[f, dV = f027r (fo [fg(e (’f) er] sm<;5d¢>
(c) The mass of the solid with the density 6(r,6,¢) is M = [[[, 6(r,0,4)dV .

10. Let a region R, in the zy-plane be mapped to a region R, in the uv-plane under the

change of variables u = u(z,y), v =v(z,y).

(a) The magnitude of the Jacobian of the change is ‘gg;‘;’; = -‘g—zg—z - g—z% :
—1
(b) Theintegral over Ry, is fway z,y) dAyy = ffR v), y(u,v)) SEZZX dA, .

11. The area of the surface that extends upward from the curve z = z(t), y =y(t), a <

t < bin the zy-plane to the surface z = f(x,y) is given by the following line integral
b o\ 2 2
A= [gzds= [ fla(t),y(t)/ (%) + (F) dt.

12. Consider a line integral [, f(z,y)dz + g(z,y)dy, and let P = (zp,yp) and Q =
(zg,yq) be the endpoints of the curve C.

(a) The line integral is independent of the path if 9, f(z,y) = 0.g9(z,y) .

(b) Then there is a potential function ¢(z,y) satisfying 22 = = f(z,y), a—z = g(z,y),

(c) and the Fundamental Theorem of Line |ntegrals says that

[o f,y)dz + g(z,y)dy = JE % dy + & 2dy = d(z, )2 = d(zq,yq) —

¢(37P,yp)-

13. Let a closed curve C be oriented counterclockwise, and be the boundary of a simply

connected region [ in the zy-plane. By Green's Theorem we have
9g(, 8
$. flz,y) dz + g(z,y) dy_ffR<g§;y> f(xy>>dA

14. Let F(z,y,2) = M i+ N j+ Pk be a vector field.

(a) If o is the surface z = f(z,y), oriented by upward unit normals n, and R is the

projection of o onto the xy-plane then

flux = [f, F-ndS = [f, (-M% - N% + P) dA.
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(b) If o is the surface z = f(z,y), oriented by downward unit normals n, and R is the

projection of o onto the xy-plane then
flux = [f, FondS = [f, (MZ+ N~ P)dA.

(c) According to the Divergence Theorem the flux of F across a closed surface o with

outward orientation is
flux = ffa F-ndS = fffvdideV, divF = aM 4 9 3N + %1:,

(d) If ¢ is an oriented smooth surface that is bounded by a simple, closed, smooth

boundary curve C' with positive orientation then, according to Stokes’ Theorem

fc F.dr = [[ (curl F)-ndS ,- curl F = (%—1; — %]z!) i-l—(%ﬂz/f w)j+<%];£ — %—A;) k.

15. The Laplace transform of a function f(t) is the function F'(s) defined by

F(s)=L(f(t)) =[5 e~ f()dt

f(t) = L7(F(s)).

Function Transform Function Transform
eat E%E 6attn (s—Z)!TH—l
e sin wt Fa;;w e coswt (s_z);zawg
e sinh wt (S—_#_—uﬂ e cosh wt (—STZ)‘;‘fwz
t sin wt (sz—i“fa)—Q t cos wt (—352—25‘:"2—22
u(t — a) €. §(t — a) e~

16. Let F(s) = L(f(t)), then L(f(t — a)u(t — a)) = e"*F(s);

L(e*f(t)) =F(s—a);
17. Let Y(s) = L£(y), then L(¥/)

18. Convolution. Let f(t) * g(t fo

L(tfE) =~

= sY(s) —y(0), L(y") = s*Y(s) — sy(0) —¢/(0).

L L(f(kt) =+F(2) .

g(t —7)dr. Then L(f(t) * g(t)) = F(s)G(s)
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