2011 final exam solutions

la. Applying the Laplace transform to both sides gives

1b.

86_7r8 —OoTS
s> Z(y) — sy(0) —y'(0) +4.L(y) = — 8¢
and we can rearrange terms to write this equation as
2 8e ™ —3ms
(s*+4)ZL(y) =2s+ — 8e ™,
S

Next, we divide by s% 4 4 and use partial fractions to find that

2s Re TS Re 378
Ly) = —
(v) 32—|—4+s(32—|—4) s?2+4
2s 2e”™  2ge”™ 8IS

+ = - .
s2+4 s s2+4  s2+4
Using this fact and our table of Laplace transforms, we conclude that

y(t) = 2cos(2t) + 2u(t — m) — 2u(t — 7) cos(2t — 27) — 4u(t — 37) sin(2t — 67)
= 2cos(2t) + 2u(t — m) — 2u(t — 7) cos(2t) — 4u(t — 3m) sin(2t).

The input function refers to the right hand side of the given equation. In this case, it
is 0 when ¢t < 7, it is 8 when 7 <t # 37 and it is minus infinity when ¢ = 37. As for
the solution we found in part (a), this can be written in the form

2 cos(2t) ift<m
y(t) = 2 if m<t<3rm
9 4sin(2t) if ¢t > 3w

A sketch of the graph of this function appears in the figure below.
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2a.

2b.

2c.

2d.

2e.

3a.

The direction of most rapid increase is given by the gradient V f = (f,, f,, f.), where

(y* — sin(3z — 22)),

fo= 2¢/y? — sin(3z — 2z)
 —cos(3r—22)-3  —cos0-3 3
2¢/y? —sin(3z — 2z)  2v/1 —sin0 2
at the given point, while a similar computation gives f, = —1 and f, = 1. To find a

unit vector w in the direction of the gradient, we simply divide by its length:
3 9 V17
2 4 2
w— Vi <_ 32 2 >
IV /1] VT VT VAT
The projection of a vector onto the xy-plane is obtained by ignoring its z-coordinate.

Thus, the projection of u = <—3/\/ﬁ, —2/\/1_7, 2/\/ﬁ> is <—3/\/1_7, —2/\/ﬁ>.

Since u is a unit vector in the direction of most rapid increase, —w is a unit vector in
the direction of most rapid decrease.

—

The projection of a vector onto the yz-plane is obtained by ignoring its z-coordinate.

Thus, the projection of —u = (3/v/17,2/v17,—2/V/17) is (2/V17,-2/V/17).
The rate of change in the direction of +u is equal to £||V f|| = £3v/17, respectively.
Let us first simplify the given equation and write
1
z= f(x,y) = §1n<2x2 — 3y — 3z + 21) —In 3.

Differentiating with respect to x, we then find that

1 4z — 3y° _ -1
3 222 —3y3 —3xy2+21 3 2T

fx =
at the given point, while a similar computation gives f, = 0 as well. Noting that

1
20 = f(3,-2) = g1n<18+24—36+21) 13

1
=_-In3*~-In3=0
3n n ,

we conclude that the equation of the tangent plane at the given point is

= Fi(3,-2) - (x = 3)+ £,(3,-2) - (y + 2) = 0.



3b.

3c.

3d.
4a.
4b.

4c.

5a.

The tangent plane z = 0 is merely the zy-plane.

The normal line passes through (3, —2,0) with direction (0,0, 1), so its equation is

The normal line has direction (0,0, 1), so it is parallel to the z-axis.

The surface is a cylinder of radius v/8.

The surface lies above the rectangle R, so its projection onto the xy-plane is just R.
Solving the given equation for z, one finds that

(z=1P2=8-(z-2) = 2z=1+8—(z—2)2

In particular, we have z = f(z,y) for some function f and we need to integrate

dS = \/1+ f2+ f2 dxdy

over the region R. Since f(z,y) =1+ /8 — (z — 2)? by above, we get

_ 2(x —2) 2 2 _ (z —2)° _ 8
N ey s -y iy -y gy

and so the area of the surface is

s flas= [ [ o[ o

To compute the rightmost integral, we use an analogue of polar coordinates:

8—(z -2 =v? = (r—-2)+u*=38
— 1z —2=1/8sinb, u = v/3cosb.

In other words, we use the substitution z = 2 + v/8sinf. Note that z = 0 if and only
if sin@ = —1//2, while = 4 if and only if sin@ = 1/4/2. This actually gives

4 /4 w/4
Area:/ Sdx 8- \/§COSOd9 / S do — dr.
0

V8 — (m—2) /4 ~ VBcosh /4

The given line integral is path-independent because

(dxy — 3y), =4y = (x + 2y? — 3x2)y.



5b.

5c.

5d.

6a.

A potential function ¢ is a function that satisfies the equations
by = x + 2% — 3%, ¢y = 4xy — 3y.

Integrating the first equation with respect to x gives

2
¢ = /(x—i—2y2 —3x2)dx = %+2xy2 —x3+C’1(y),

and we may similarly integrate the second equation to get

3 2
¢ = [ (dzy — 3y) dy = 2zy* — % + Cy(z).
3 3,2

Thus, one can always take ¢(z,y) = 2zy? + %xQ —x® = Sy

According to the fundamental theorem, the value of the integral is
»(1/2,1) — ¢(—1,0) = —-1/2 - 3/2 = -2.
The first line segment is from (—1,0) to (1/2,0) and its parametric equation is
r(t) = (t,0), —-1<t<1)/2.

This gives x =t and also y = 0, so we get

1/2 2 1/2
I = / (t —3t*) dt = {— - tS] = -3/2.
-1 2 -1

The second line segment is from (1/2,0) to (1/2,1) and its parametric equation is
r(t) = (1/2,t), 0<t<l1.

This gives = 1/2 and y = ¢, so we get

1 1
12:/ (2t—3t)dt:—/ Lt = —1/2.
0 0

In particular, I; + Iy = —2 and this agrees with our answer in part (c).

Spherical coordinates are defined by the equations

x = psin¢cosb, y = psin¢sinf, 2z = pCos .



6b. The surface 22 + y? + 22 = a? describes a sphere of radius a, while the surface z = 0 is
the xy-plane. The boundary of the solid which belongs to the xy-plane is the annulus
that lies inside the circle 22 + y? = 4 but outside the circle 22 + y* = 1. To find the
volume of the solid using spherical coordinates, we note that 1 < p < 2 and that the
points above the xy-plane are those with angles 0 < ¢ < 7/2. This implies that

2 pw/2 2
Volume = / / / p*sin ¢ dp de df
0 0 1
2 w/2 p3 2
= / [—] sin ¢ d¢ df
0 3 1
2

0
/2
:Z/ |:—COS¢i| d9:14—7r.
3 0 0 3

To find the mass of the solid, we proceed similarly to get

2 pw/2 P2 )
Mass :/ / / pe P sinpdpdpdb
o Jo 1
/27r /TF/Q e P 2
o Jo )
et—e?

2m -
= %/ [— cos ¢] ? d) = (et — e ™).
0

0



